File size: 5,765 Bytes
0e467b4
4b8259d
 
0e467b4
4b8259d
 
0f2e342
0e467b4
4b8259d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f2e342
4b8259d
 
95eb12c
4b8259d
 
 
95eb12c
0e467b4
0f2e342
4b8259d
0e467b4
 
 
556e3aa
4b8259d
 
 
ec5ffa1
4b8259d
0e467b4
4b8259d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e467b4
4b8259d
0e467b4
4b8259d
 
0e467b4
d954236
 
4b8259d
 
 
 
 
 
 
 
 
 
 
 
 
d954236
3bc7caf
4b8259d
556e3aa
4b8259d
 
 
 
 
 
 
 
d954236
4b8259d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d954236
4b8259d
3bc7caf
4b8259d
 
 
 
 
 
ec5ffa1
4b8259d
3bc7caf
4b8259d
 
 
 
 
3bc7caf
4b8259d
 
d954236
4b8259d
 
 
 
 
 
 
 
 
 
556e3aa
ec5ffa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
tmpdir = None

def transcribe(audio_file):
    try:
        audio, rate = librosa.load(audio_file, sr=16000)
        input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
        with torch.no_grad():
            logits = model(input_values).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)[0]
        return transcription.replace("[UNK]", "")
    except Exception as e:
        return f"處理文件錯誤: {e}"

# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred, {
    "storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()

# Load ASR model and processor
MODEL_NAME = "eleferrand/XLSR_paiwan"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)

def transcribe_both(audio_file):
    transcription = transcribe(audio_file)
    return transcription, transcription

def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
    try:
        audio_metadata = {}
        audio_file_url = None
        if audio_file and os.path.exists(audio_file):
            audio, sr = librosa.load(audio_file, sr=44100)
            duration = librosa.get_duration(y=audio, sr=sr)
            file_size = os.path.getsize(audio_file)
            audio_metadata = {'duration': duration, 'file_size': file_size}
            unique_id = str(uuid.uuid4())
            destination_path = f"audio/pai/{unique_id}.wav"
            blob = bucket.blob(destination_path)
            blob.upload_from_filename(audio_file)
            audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
        combined_data = {
            'transcription_info': {'original_text': original_transcription, 'corrected_text': corrected_transcription, 'language': 'pai'},
            'audio_data': {'audio_metadata': audio_metadata, 'audio_file_url': audio_file_url},
            'user_info': {'native_paiwan_speaker': native_speaker, 'age': age},
            'timestamp': datetime.now().isoformat(), 'model_name': MODEL_NAME
        }
        db.collection('paiwan_transcriptions').add(combined_data)
        return "校正保存成功!"
    except Exception as e:
        return f"保存失败: {e}"

def prepare_download(audio_file, original_transcription, corrected_transcription):
    if audio_file is None:
        return None
    tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
    tmp_zip.close()
    with zipfile.ZipFile(tmp_zip.name, "w") as zf:
        if os.path.exists(audio_file):
            zf.write(audio_file, arcname="audio.wav")
        orig_txt = "original_transcription.txt"
        with open(orig_txt, "w", encoding="utf-8") as f:
            f.write(original_transcription)
        zf.write(orig_txt, arcname=orig_txt)
        os.remove(orig_txt)
        corr_txt = "corrected_transcription.txt"
        with open(corr_txt, "w", encoding="utf-8") as f:
            f.write(corrected_transcription)
        zf.write(corr_txt, arcname=corr_txt)
        os.remove(corr_txt)
    return tmp_zip.name

# Interface
with gr.Blocks() as demo:
    title = gr.Markdown("排灣語自動語音識別校正系統 (Paiwan ASR Transcription & Correction System)")
    step1 = gr.Markdown(
        "步驟 1:音訊上傳與產生逐字稿 (Audio Upload & Automatic Transcription)\n\n上傳後系統將自動產生逐字稿,請耐心等待。"
    )
    with gr.Row():
        audio_input = gr.Audio(
            sources=["upload", "microphone"], type="filepath", label="音訊輸入 (Audio Input)"
        )

    step2 = gr.Markdown("步驟 2:審閱與編輯逐字稿 (Step 2: Review & Edit Transcription)")
    with gr.Row():
        original_text = gr.Textbox(
            label="原始逐字稿 (Original Transcription)", interactive=False, lines=5
        )
        corrected_text = gr.Textbox(
            label="更正逐字稿 (Corrected Transcription)", interactive=True, lines=5
        )
    # Automatically generate transcription on audio upload
    audio_input.change(
        transcribe_both,
        inputs=audio_input,
        outputs=[original_text, corrected_text],
        queue=True
    )

    step3 = gr.Markdown("步驟 3:使用者資訊 (Step 3: User Information)")
    with gr.Row():
        age_input = gr.Slider(
            minimum=0, maximum=100, step=1, label="年齡 (Age)", value=25
        )
        native_speaker_input = gr.Checkbox(
            label="母語排灣語使用者? (Native Paiwan Speaker?)", value=True
        )

    step4 = gr.Markdown("步驟 4:儲存與下載 (Step 4: Save & Download)")
    with gr.Row():
        save_button = gr.Button("儲存 (Save)")
        save_status = gr.Textbox(
            label="儲存狀態 (Save Status)", interactive=False
        )

    with gr.Row():
        download_button = gr.Button("下載 ZIP 檔案 (Download ZIP File)")
        download_output = gr.File()

    save_button.click(
        store_correction,
        inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input],
        outputs=save_status
    )
    download_button.click(
        prepare_download,
        inputs=[audio_input, original_text, corrected_text],
        outputs=download_output
    )

demo.launch()