Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import Sequential
|
5 |
+
from tensorflow.keras.layers import Dense
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import MinMaxScaler
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Load dataset
|
11 |
+
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
|
12 |
+
column_names = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin",
|
13 |
+
"BMI", "DiabetesPedigreeFunction", "Age", "Outcome"]
|
14 |
+
df = pd.read_csv(url, header=None, names=column_names)
|
15 |
+
|
16 |
+
# Replace zero values with mean
|
17 |
+
cols_with_zero = ["Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI"]
|
18 |
+
df[cols_with_zero] = df[cols_with_zero].replace(0, np.nan)
|
19 |
+
df.fillna(df.mean(), inplace=True)
|
20 |
+
|
21 |
+
# Feature selection
|
22 |
+
selected_features = ["Pregnancies", "Glucose", "Insulin", "BMI", "Age"]
|
23 |
+
X = df[selected_features]
|
24 |
+
y = df["Outcome"]
|
25 |
+
|
26 |
+
# Normalize
|
27 |
+
scaler = MinMaxScaler()
|
28 |
+
X_scaled = scaler.fit_transform(X)
|
29 |
+
|
30 |
+
# Train-test split
|
31 |
+
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
|
32 |
+
|
33 |
+
# Build ANN model
|
34 |
+
model = Sequential([
|
35 |
+
Dense(12, activation='relu', input_shape=(X_train.shape[1],)),
|
36 |
+
Dense(8, activation='relu'),
|
37 |
+
Dense(1, activation='sigmoid')
|
38 |
+
])
|
39 |
+
|
40 |
+
# Compile and train
|
41 |
+
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01),
|
42 |
+
loss='binary_crossentropy',
|
43 |
+
metrics=['accuracy'])
|
44 |
+
model.fit(X_train, y_train, epochs=400, batch_size=16, verbose=0)
|
45 |
+
|
46 |
+
# Prediction function
|
47 |
+
def predict_diabetes(pregnancies, glucose, insulin, bmi, age):
|
48 |
+
input_data = np.array([[pregnancies, glucose, insulin, bmi, age]])
|
49 |
+
input_scaled = scaler.transform(input_data)
|
50 |
+
prediction = model.predict(input_scaled)[0][0]
|
51 |
+
return "Diabetic" if prediction >= 0.5 else "Not Diabetic"
|
52 |
+
|
53 |
+
# Gradio Interface
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=predict_diabetes,
|
56 |
+
inputs=[
|
57 |
+
gr.Number(label="Pregnancies"),
|
58 |
+
gr.Number(label="Glucose"),
|
59 |
+
gr.Number(label="Insulin"),
|
60 |
+
gr.Number(label="BMI"),
|
61 |
+
gr.Number(label="Age")
|
62 |
+
],
|
63 |
+
outputs="text",
|
64 |
+
title="Diabetes Prediction using ANN",
|
65 |
+
description="Enter medical values to predict whether a person has diabetes"
|
66 |
+
)
|
67 |
+
|
68 |
+
iface.launch()
|