Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.impute import SimpleImputer
|
3 |
+
from sklearn.preprocessing import MinMaxScaler
|
4 |
+
|
5 |
+
# Load data
|
6 |
+
df = pd.read_csv("diabetes.csv")
|
7 |
+
|
8 |
+
# Replace 0s with NaN (Glucose, BP, etc.)
|
9 |
+
cols = ["Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI"]
|
10 |
+
df[cols] = df[cols].replace(0, float('nan'))
|
11 |
+
|
12 |
+
# Impute missing values with mean
|
13 |
+
imputer = SimpleImputer(strategy="mean")
|
14 |
+
df[cols] = imputer.fit_transform(df[cols])
|
15 |
+
|
16 |
+
# Remove outliers using IQR
|
17 |
+
Q1 = df.quantile(0.25)
|
18 |
+
Q3 = df.quantile(0.75)
|
19 |
+
IQR = Q3 - Q1
|
20 |
+
df = df[~((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]
|
21 |
+
|
22 |
+
# Feature selection (keep: Pregnancies, Glucose, Insulin, BMI, Age)
|
23 |
+
X = df[["Pregnancies", "Glucose", "Insulin", "BMI", "Age"]]
|
24 |
+
y = df["Outcome"]
|
25 |
+
|
26 |
+
# Normalize to [0, 1]
|
27 |
+
scaler = MinMaxScaler()
|
28 |
+
X = scaler.fit_transform(X)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# Machine Learning Models (DT, KNN, RF, NB, AB, LR, SVM)
|
34 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
35 |
+
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
|
36 |
+
from sklearn.svm import SVC
|
37 |
+
from sklearn.linear_model import LogisticRegression
|
38 |
+
from sklearn.tree import DecisionTreeClassifier
|
39 |
+
from sklearn.neighbors import KNeighborsClassifier
|
40 |
+
from sklearn.naive_bayes import GaussianNB
|
41 |
+
|
42 |
+
# Split data (85% train, 15% test)
|
43 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42)
|
44 |
+
|
45 |
+
# Initialize models
|
46 |
+
models = {
|
47 |
+
"DT": DecisionTreeClassifier(),
|
48 |
+
"KNN": KNeighborsClassifier(n_neighbors=7),
|
49 |
+
"RF": RandomForestClassifier(),
|
50 |
+
"NB": GaussianNB(),
|
51 |
+
"AB": AdaBoostClassifier(),
|
52 |
+
"LR": LogisticRegression(),
|
53 |
+
"SVM": SVC()
|
54 |
+
}
|
55 |
+
|
56 |
+
# Evaluate via k-fold CV (k=10)
|
57 |
+
for name, model in models.items():
|
58 |
+
scores = cross_val_score(model, X, y, cv=10, scoring="accuracy")
|
59 |
+
print(f"{name} CV Accuracy: {scores.mean():.2%}")
|
60 |
+
|
61 |
+
# Evaluate via train-test split
|
62 |
+
for name, model in models.items():
|
63 |
+
model.fit(X_train, y_train)
|
64 |
+
acc = model.score(X_test, y_test)
|
65 |
+
print(f"{name} Test Accuracy: {acc:.2%}")
|
66 |
+
|
67 |
+
|
68 |
+
#Neural Network (Keras)
|
69 |
+
|
70 |
+
from tensorflow.keras.models import Sequential
|
71 |
+
from tensorflow.keras.layers import Dense
|
72 |
+
from tensorflow.keras.optimizers import SGD
|
73 |
+
|
74 |
+
# NN with 2 hidden layers (architecture from paper)
|
75 |
+
model = Sequential([
|
76 |
+
Dense(26, activation="relu", input_shape=(5,)),
|
77 |
+
Dense(5, activation="relu"),
|
78 |
+
Dense(1, activation="sigmoid")
|
79 |
+
])
|
80 |
+
|
81 |
+
# Compile with SGD (lr=0.01)
|
82 |
+
model.compile(optimizer=SGD(learning_rate=0.01),
|
83 |
+
loss="binary_crossentropy",
|
84 |
+
metrics=["accuracy"])
|
85 |
+
|
86 |
+
# Train for 400 epochs
|
87 |
+
history = model.fit(X_train, y_train, epochs=400, batch_size=32,
|
88 |
+
validation_data=(X_test, y_test), verbose=0)
|