FrancescaScipioni commited on
Commit
4f8f8da
·
verified ·
1 Parent(s): 535f4d4

fixed FAISS initial document

Browse files
Files changed (1) hide show
  1. agent.py +5 -4
agent.py CHANGED
@@ -15,6 +15,7 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
15
  from langchain_community.vectorstores import FAISS
16
  from langchain_openai import ChatOpenAI
17
  from langchain_core.messages import HumanMessage, SystemMessage
 
18
  from langchain.tools.retriever import create_retriever_tool
19
  from langgraph.graph import StateGraph, START, END, MessagesState
20
  from langgraph.prebuilt import ToolNode, tools_condition
@@ -126,10 +127,10 @@ sys_msg = SystemMessage(content=system_prompt)
126
 
127
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
128
 
129
- # Ensure `documents` is defined – this should be a list of LangChain Document objects
130
- # Example: documents = [Document(page_content="Q: What is 2+2? A: 4", metadata={}), ...]
131
- # If you don't have documents yet, load or define them here.
132
- documents = [] # <-- You MUST fill this with actual documents
133
  vector_store = FAISS.from_documents(documents, embeddings)
134
 
135
  retriever_tool = create_retriever_tool(
 
15
  from langchain_community.vectorstores import FAISS
16
  from langchain_openai import ChatOpenAI
17
  from langchain_core.messages import HumanMessage, SystemMessage
18
+ from langchain_core.documents import Document
19
  from langchain.tools.retriever import create_retriever_tool
20
  from langgraph.graph import StateGraph, START, END, MessagesState
21
  from langgraph.prebuilt import ToolNode, tools_condition
 
127
 
128
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
129
 
130
+ documents = [
131
+ Document(page_content="What is the capital of France? Paris.", metadata={"source": "example"}),
132
+ Document(page_content="How many legs does a spider have? 8.", metadata={"source": "example"}),
133
+ ]
134
  vector_store = FAISS.from_documents(documents, embeddings)
135
 
136
  retriever_tool = create_retriever_tool(