added the final agent graph, plus a test question for testing the agent
Browse files
agent.py
CHANGED
@@ -1,203 +1,88 @@
|
|
1 |
-
|
2 |
-
from langchain.utilities import WikipediaAPIWrapper, ArxivAPIWrapper, DuckDuckGoSearchRun
|
3 |
import math
|
4 |
import whisper
|
5 |
-
from youtube_transcript_api import YouTubeTranscriptApi
|
6 |
-
from PIL import Image
|
7 |
-
import pytesseract
|
8 |
import pandas as pd
|
|
|
|
|
9 |
from dotenv import load_dotenv
|
|
|
|
|
10 |
|
11 |
-
from
|
12 |
-
from
|
|
|
|
|
13 |
from langchain_openai import ChatOpenAI
|
14 |
from langchain_core.messages import HumanMessage, SystemMessage
|
15 |
-
from
|
|
|
|
|
16 |
|
|
|
17 |
load_dotenv()
|
18 |
-
|
19 |
-
## ----- API KEYS ----- ##
|
20 |
-
|
21 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
22 |
|
23 |
-
## -----
|
24 |
-
|
25 |
-
# ** Math Tools ** #
|
26 |
-
|
27 |
-
def add_numbers(a: float, b: float) -> float:
|
28 |
-
"""
|
29 |
-
Add two floating-point numbers.
|
30 |
-
|
31 |
-
Args:
|
32 |
-
a (float): The first number.
|
33 |
-
b (float): The second number.
|
34 |
-
|
35 |
-
Returns:
|
36 |
-
float: The result of the addition.
|
37 |
-
"""
|
38 |
-
return a + b
|
39 |
-
|
40 |
-
def subtract_numbers(a: float, b: float) -> float:
|
41 |
-
"""
|
42 |
-
Subtract the second floating-point number from the first.
|
43 |
-
|
44 |
-
Args:
|
45 |
-
a (float): The first number.
|
46 |
-
b (float): The second number.
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
float: The result of the subtraction.
|
50 |
-
"""
|
51 |
-
return a - b
|
52 |
-
|
53 |
-
def multiply_numbers(a: float, b: float) -> float:
|
54 |
-
"""
|
55 |
-
Multiply two floating-point numbers.
|
56 |
-
|
57 |
-
Args:
|
58 |
-
a (float): The first number.
|
59 |
-
b (float): The second number.
|
60 |
-
|
61 |
-
Returns:
|
62 |
-
float: The result of the multiplication.
|
63 |
-
"""
|
64 |
-
return a * b
|
65 |
|
|
|
|
|
|
|
|
|
66 |
def divide_numbers(a: float, b: float) -> float:
|
67 |
-
""
|
68 |
-
Divide the first floating-point number by the second.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
a (float): The numerator.
|
72 |
-
b (float): The denominator.
|
73 |
-
|
74 |
-
Returns:
|
75 |
-
float: The result of the division.
|
76 |
-
|
77 |
-
Raises:
|
78 |
-
ValueError: If division by zero is attempted.
|
79 |
-
"""
|
80 |
-
if b == 0:
|
81 |
-
raise ValueError("Division by zero")
|
82 |
return a / b
|
83 |
-
|
84 |
-
def
|
85 |
-
"""
|
86 |
-
Raise the first number to the power of the second.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
a (float): The base.
|
90 |
-
b (float): The exponent.
|
91 |
-
|
92 |
-
Returns:
|
93 |
-
float: The result of the exponentiation.
|
94 |
-
"""
|
95 |
-
return a ** b
|
96 |
-
|
97 |
-
def modulus(a: float, b: float) -> float:
|
98 |
-
"""
|
99 |
-
Compute the modulus (remainder) of the division of a by b.
|
100 |
-
|
101 |
-
Args:
|
102 |
-
a (float): The dividend.
|
103 |
-
b (float): The divisor.
|
104 |
-
|
105 |
-
Returns:
|
106 |
-
float: The remainder after division.
|
107 |
-
"""
|
108 |
-
return a % b
|
109 |
-
|
110 |
def square_root(a: float) -> float:
|
111 |
-
""
|
112 |
-
Compute the square root of a number.
|
113 |
-
|
114 |
-
Args:
|
115 |
-
a (float): The number.
|
116 |
-
|
117 |
-
Returns:
|
118 |
-
float: The square root.
|
119 |
-
|
120 |
-
Raises:
|
121 |
-
ValueError: If a is negative.
|
122 |
-
"""
|
123 |
-
if a < 0:
|
124 |
-
raise ValueError("Cannot compute square root of a negative number")
|
125 |
return math.sqrt(a)
|
126 |
-
|
127 |
def logarithm(a: float, base: float = math.e) -> float:
|
128 |
-
""
|
129 |
-
Compute the logarithm of a number with a specified base.
|
130 |
-
|
131 |
-
Args:
|
132 |
-
a (float): The number.
|
133 |
-
base (float, optional): The logarithmic base (default is natural log).
|
134 |
-
|
135 |
-
Returns:
|
136 |
-
float: The logarithm.
|
137 |
-
|
138 |
-
Raises:
|
139 |
-
ValueError: If a or base is not positive.
|
140 |
-
"""
|
141 |
-
if a <= 0 or base <= 0:
|
142 |
-
raise ValueError("Logarithm arguments must be positive")
|
143 |
return math.log(a, base)
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
# DuckDuckGo Web Search
|
148 |
-
duckduckgo_search = DuckDuckGoSearchRun()
|
149 |
web_search_tool = Tool.from_function(
|
150 |
-
func=
|
151 |
name="Web Search",
|
152 |
-
description="
|
153 |
)
|
154 |
|
155 |
-
# Wikipedia Search
|
156 |
-
wikipedia_search = WikipediaAPIWrapper()
|
157 |
wikipedia_tool = Tool.from_function(
|
158 |
-
func=
|
159 |
name="Wikipedia Search",
|
160 |
-
description="
|
161 |
)
|
162 |
|
163 |
-
# ArXiv Search
|
164 |
-
arxiv_search = ArxivAPIWrapper()
|
165 |
arxiv_tool = Tool.from_function(
|
166 |
-
func=
|
167 |
name="ArXiv Search",
|
168 |
-
description="
|
169 |
)
|
170 |
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
@tool
|
176 |
def transcribe_audio(file_path: str) -> str:
|
177 |
-
"""Transcribe
|
178 |
-
|
179 |
-
return result["text"]
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
-
@tool
|
184 |
def get_youtube_transcript(video_id: str) -> str:
|
185 |
-
"""
|
186 |
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
187 |
-
return " ".join(
|
188 |
-
|
189 |
-
# ** Image Tool ** #
|
190 |
|
191 |
-
|
|
|
192 |
def extract_text_from_image(image_path: str) -> str:
|
193 |
-
"""Extract text from an image
|
194 |
return pytesseract.image_to_string(Image.open(image_path))
|
195 |
|
196 |
-
#
|
197 |
-
|
198 |
-
@tool
|
199 |
def execute_python_code(code: str) -> str:
|
200 |
-
"""Execute a Python
|
201 |
try:
|
202 |
local_vars = {}
|
203 |
exec(code, {}, local_vars)
|
@@ -205,60 +90,94 @@ def execute_python_code(code: str) -> str:
|
|
205 |
except Exception as e:
|
206 |
return f"Error: {e}"
|
207 |
|
208 |
-
#
|
209 |
-
|
210 |
-
@tool
|
211 |
def total_sales_from_excel(file_path: str) -> str:
|
212 |
"""Compute total food sales from an Excel file."""
|
213 |
df = pd.read_excel(file_path)
|
214 |
food_df = df[df["Category"] == "Food"]
|
215 |
-
|
216 |
-
return f"{total_sales:.2f} USD"
|
217 |
-
|
218 |
|
219 |
-
## -----
|
220 |
|
221 |
tools = [
|
222 |
-
|
223 |
-
Tool.from_function(
|
224 |
-
Tool.from_function(
|
225 |
-
Tool.from_function(
|
226 |
-
Tool.from_function(
|
227 |
-
Tool.from_function(
|
228 |
-
Tool.from_function(
|
229 |
-
Tool.from_function(
|
230 |
-
Tool.from_function(func=logarithm, name="Logarithm", description="Compute the logarithm of a number with a given base."),
|
231 |
-
# Search
|
232 |
web_search_tool,
|
233 |
wikipedia_tool,
|
234 |
arxiv_tool,
|
235 |
-
|
236 |
-
Tool.from_function(
|
237 |
-
|
238 |
-
Tool.from_function(
|
239 |
-
|
240 |
-
Tool.from_function(func=extract_text_from_image, name="Image OCR", description="Extract text from an image file."),
|
241 |
-
# Code Execution
|
242 |
-
Tool.from_function(func=execute_python_code, name="Python Code Executor", description="Run and return output from a Python script."),
|
243 |
-
# Excel parsing
|
244 |
-
Tool.from_function(func=total_sales_from_excel, name="Excel Sales Parser", description="Compute total food sales from Excel file."),
|
245 |
]
|
246 |
|
247 |
-
|
248 |
-
## ----- LLM MODEL ----- ##
|
249 |
-
|
250 |
-
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
251 |
-
llm_with_tools = llm.bind_tools(tools)
|
252 |
-
|
253 |
## ----- SYSTEM PROMPT ----- ##
|
254 |
|
255 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
256 |
system_prompt = f.read()
|
257 |
-
print(system_prompt)
|
258 |
-
|
259 |
-
# System message
|
260 |
sys_msg = SystemMessage(content=system_prompt)
|
261 |
|
262 |
-
## -----
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
|
|
2 |
import math
|
3 |
import whisper
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
+
import pytesseract
|
6 |
+
from PIL import Image
|
7 |
from dotenv import load_dotenv
|
8 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
9 |
+
from typing import TypedDict, Dict, Any, Optional, List
|
10 |
|
11 |
+
from langchain.tools import Tool
|
12 |
+
from langchain.utilities import WikipediaAPIWrapper, ArxivAPIWrapper, DuckDuckGoSearchRun
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain_community.vectorstores import FAISS
|
15 |
from langchain_openai import ChatOpenAI
|
16 |
from langchain_core.messages import HumanMessage, SystemMessage
|
17 |
+
from langchain.tools.retriever import create_retriever_tool
|
18 |
+
from langgraph.graph import StateGraph, START, END, MessagesState
|
19 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
20 |
|
21 |
+
# Load environment variables
|
22 |
load_dotenv()
|
|
|
|
|
|
|
23 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
24 |
|
25 |
+
## ----- TOOL DEFINITIONS ----- ##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Math Tools
|
28 |
+
def add_numbers(a: float, b: float) -> float: return a + b
|
29 |
+
def subtract_numbers(a: float, b: float) -> float: return a - b
|
30 |
+
def multiply_numbers(a: float, b: float) -> float: return a * b
|
31 |
def divide_numbers(a: float, b: float) -> float:
|
32 |
+
if b == 0: raise ValueError("Division by zero")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
return a / b
|
34 |
+
def power(a: float, b: float) -> float: return a ** b
|
35 |
+
def modulus(a: float, b: float) -> float: return a % b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def square_root(a: float) -> float:
|
37 |
+
if a < 0: raise ValueError("Cannot compute square root of a negative number")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return math.sqrt(a)
|
|
|
39 |
def logarithm(a: float, base: float = math.e) -> float:
|
40 |
+
if a <= 0 or base <= 0: raise ValueError("Logarithm arguments must be positive")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return math.log(a, base)
|
42 |
|
43 |
+
# Web Search Tools
|
|
|
|
|
|
|
44 |
web_search_tool = Tool.from_function(
|
45 |
+
func=DuckDuckGoSearchRun().run,
|
46 |
name="Web Search",
|
47 |
+
description="Search the internet for general-purpose queries."
|
48 |
)
|
49 |
|
|
|
|
|
50 |
wikipedia_tool = Tool.from_function(
|
51 |
+
func=WikipediaAPIWrapper().run,
|
52 |
name="Wikipedia Search",
|
53 |
+
description="Search Wikipedia for factual or encyclopedic information."
|
54 |
)
|
55 |
|
|
|
|
|
56 |
arxiv_tool = Tool.from_function(
|
57 |
+
func=ArxivAPIWrapper().run,
|
58 |
name="ArXiv Search",
|
59 |
+
description="Search ArXiv for scientific papers. Input should be a research topic or query."
|
60 |
)
|
61 |
|
62 |
+
# Audio Transcription
|
63 |
+
whisper_model = whisper.load_model("base")
|
64 |
+
@Tool
|
|
|
|
|
65 |
def transcribe_audio(file_path: str) -> str:
|
66 |
+
"""Transcribe audio files using Whisper."""
|
67 |
+
return whisper_model.transcribe(file_path)["text"]
|
|
|
68 |
|
69 |
+
# YouTube Transcript
|
70 |
+
@Tool
|
|
|
71 |
def get_youtube_transcript(video_id: str) -> str:
|
72 |
+
"""Extract transcript from YouTube video using video ID."""
|
73 |
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
74 |
+
return " ".join(entry["text"] for entry in transcript)
|
|
|
|
|
75 |
|
76 |
+
# OCR Tool
|
77 |
+
@Tool
|
78 |
def extract_text_from_image(image_path: str) -> str:
|
79 |
+
"""Extract text from an image file."""
|
80 |
return pytesseract.image_to_string(Image.open(image_path))
|
81 |
|
82 |
+
# Code Execution
|
83 |
+
@Tool
|
|
|
84 |
def execute_python_code(code: str) -> str:
|
85 |
+
"""Execute a Python script and return the output."""
|
86 |
try:
|
87 |
local_vars = {}
|
88 |
exec(code, {}, local_vars)
|
|
|
90 |
except Exception as e:
|
91 |
return f"Error: {e}"
|
92 |
|
93 |
+
# Excel Parsing
|
94 |
+
@Tool
|
|
|
95 |
def total_sales_from_excel(file_path: str) -> str:
|
96 |
"""Compute total food sales from an Excel file."""
|
97 |
df = pd.read_excel(file_path)
|
98 |
food_df = df[df["Category"] == "Food"]
|
99 |
+
return f"{food_df['Sales'].sum():.2f} USD"
|
|
|
|
|
100 |
|
101 |
+
## ----- TOOL LIST ----- ##
|
102 |
|
103 |
tools = [
|
104 |
+
Tool.from_function(add_numbers, name="Add Numbers", description="Add two numbers."),
|
105 |
+
Tool.from_function(subtract_numbers, name="Subtract Numbers", description="Subtract two numbers."),
|
106 |
+
Tool.from_function(multiply_numbers, name="Multiply Numbers", description="Multiply two numbers."),
|
107 |
+
Tool.from_function(divide_numbers, name="Divide Numbers", description="Divide two numbers."),
|
108 |
+
Tool.from_function(power, name="Power", description="Raise one number to the power of another."),
|
109 |
+
Tool.from_function(modulus, name="Modulus", description="Compute the modulus (remainder) of a division."),
|
110 |
+
Tool.from_function(square_root, name="Square Root", description="Compute the square root of a number."),
|
111 |
+
Tool.from_function(logarithm, name="Logarithm", description="Compute the logarithm of a number with a given base."),
|
|
|
|
|
112 |
web_search_tool,
|
113 |
wikipedia_tool,
|
114 |
arxiv_tool,
|
115 |
+
Tool.from_function(transcribe_audio, name="Transcribe Audio", description="Transcribe audio to text."),
|
116 |
+
Tool.from_function(get_youtube_transcript, name="YouTube Transcript", description="Extract transcript from YouTube."),
|
117 |
+
Tool.from_function(extract_text_from_image, name="Image OCR", description="Extract text from an image."),
|
118 |
+
Tool.from_function(execute_python_code, name="Python Code Executor", description="Run Python code."),
|
119 |
+
Tool.from_function(total_sales_from_excel, name="Excel Sales Parser", description="Parse Excel file for total food sales."),
|
|
|
|
|
|
|
|
|
|
|
120 |
]
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
## ----- SYSTEM PROMPT ----- ##
|
123 |
|
124 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
125 |
system_prompt = f.read()
|
|
|
|
|
|
|
126 |
sys_msg = SystemMessage(content=system_prompt)
|
127 |
|
128 |
+
## ----- EMBEDDINGS & VECTOR DB (FAISS) ----- ##
|
129 |
|
130 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
131 |
+
|
132 |
+
# Ensure `documents` is defined – this should be a list of LangChain Document objects
|
133 |
+
# Example: documents = [Document(page_content="Q: What is 2+2? A: 4", metadata={}), ...]
|
134 |
+
# If you don't have documents yet, load or define them here.
|
135 |
+
documents = [] # <-- You MUST fill this with actual documents
|
136 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
137 |
+
|
138 |
+
retriever_tool = create_retriever_tool(
|
139 |
+
retriever=vector_store.as_retriever(),
|
140 |
+
name="Question Search",
|
141 |
+
description="Retrieve similar questions from a vector store."
|
142 |
+
)
|
143 |
+
|
144 |
+
## ----- LLM WITH TOOLS ----- ##
|
145 |
+
|
146 |
+
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
147 |
+
llm_with_tools = llm.bind_tools(tools)
|
148 |
|
149 |
+
## ----- GRAPH PIPELINE ----- ##
|
150 |
+
|
151 |
+
def assistant(state: MessagesState):
|
152 |
+
"""Assistant node to generate answers."""
|
153 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
154 |
+
|
155 |
+
# Use a retriever node to inject a similar example
|
156 |
+
def retriever(state: MessagesState):
|
157 |
+
"""Retriever node to provide example context."""
|
158 |
+
similar = vector_store.similarity_search(state["messages"][0].content)
|
159 |
+
if not similar:
|
160 |
+
return {"messages": [sys_msg] + state["messages"]}
|
161 |
+
example = HumanMessage(content=f"Similar Q&A for context:\n\n{similar[0].page_content}")
|
162 |
+
return {"messages": [sys_msg] + state["messages"] + [example]}
|
163 |
+
|
164 |
+
# Build graph
|
165 |
+
builder = StateGraph(MessagesState)
|
166 |
+
builder.add_node("retriever", retriever)
|
167 |
+
builder.add_node("assistant", assistant)
|
168 |
+
builder.add_node("tools", ToolNode(tools))
|
169 |
+
|
170 |
+
builder.add_edge(START, "retriever")
|
171 |
+
builder.add_edge("retriever", "assistant")
|
172 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
173 |
+
builder.add_edge("tools", "assistant")
|
174 |
+
|
175 |
+
graph = builder.compile()
|
176 |
+
|
177 |
+
## ----- TESTING (Optional) ----- ##
|
178 |
+
|
179 |
+
if __name__ == "__main__":
|
180 |
+
test_question = "How many albums did Taylor Swift release before 2020?"
|
181 |
+
response = graph.invoke({"messages": [HumanMessage(content=test_question)]})
|
182 |
+
for msg in response["messages"]:
|
183 |
+
msg.pretty_print()
|