Spaces:
Runtime error
Runtime error
XXXXRT666
commited on
Commit
Β·
7619997
1
Parent(s):
5cfeca6
- AR/models/t2s_model_abc.py +1 -135
- AR/models/t2s_model_flash_attn.py +24 -24
- AR/models/utils.py +0 -229
- inference_webui.py +2 -3
AR/models/t2s_model_abc.py
CHANGED
|
@@ -5,10 +5,10 @@ Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
|
| 5 |
from __future__ import annotations
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 8 |
from abc import ABC, abstractmethod
|
| 9 |
from contextlib import nullcontext
|
| 10 |
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type
|
| 11 |
-
import time
|
| 12 |
|
| 13 |
import torch
|
| 14 |
import torch._inductor.config
|
|
@@ -30,138 +30,6 @@ class Sampler(nn.Module):
|
|
| 30 |
super().__init__()
|
| 31 |
self.batch_size = batch_size
|
| 32 |
|
| 33 |
-
self.logits: Tensor
|
| 34 |
-
self.samples: Tensor
|
| 35 |
-
self.register_buffer("logits", torch.zeros((batch_size, vocab_size)), persistent=False)
|
| 36 |
-
self.register_buffer("samples", torch.zeros((batch_size,), dtype=torch.int32), persistent=False)
|
| 37 |
-
|
| 38 |
-
self.__CUDAGraph: Optional[CUDAGraph] = None
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def empty_cache(self):
|
| 42 |
-
self.logits.zero_()
|
| 43 |
-
self.__CUDAGraph = None
|
| 44 |
-
|
| 45 |
-
@staticmethod
|
| 46 |
-
def multinomial_sample_one_no_sync(probs_sort: Tensor): # Does multinomial sampling without a cuda synchronization
|
| 47 |
-
q = torch.empty_like(probs_sort).exponential_(1)
|
| 48 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int32)
|
| 49 |
-
|
| 50 |
-
@staticmethod
|
| 51 |
-
def logits_to_probs(
|
| 52 |
-
logits: Tensor,
|
| 53 |
-
previous_tokens: Tensor,
|
| 54 |
-
temperature: float,
|
| 55 |
-
top_k: int,
|
| 56 |
-
top_p: float,
|
| 57 |
-
repetition_penalty: float,
|
| 58 |
-
):
|
| 59 |
-
previous_tokens = previous_tokens.long()
|
| 60 |
-
score = torch.gather(logits, dim=1, index=previous_tokens)
|
| 61 |
-
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
| 62 |
-
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
| 63 |
-
|
| 64 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 65 |
-
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
| 66 |
-
sorted_indices_to_remove = cum_probs > top_p
|
| 67 |
-
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
| 68 |
-
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
|
| 69 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
| 70 |
-
|
| 71 |
-
logits = logits / max(temperature, 1e-5)
|
| 72 |
-
|
| 73 |
-
v, _ = torch.topk(logits, top_k)
|
| 74 |
-
pivot = v[:, -1].unsqueeze(-1)
|
| 75 |
-
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
| 76 |
-
|
| 77 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 78 |
-
return probs
|
| 79 |
-
|
| 80 |
-
@staticmethod
|
| 81 |
-
def apply_repetition_penalty(logits: Tensor, previous_tokens: Tensor, repetition_penalty: float):
|
| 82 |
-
previous_tokens = previous_tokens.long()
|
| 83 |
-
score = torch.gather(logits, dim=1, index=previous_tokens)
|
| 84 |
-
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
| 85 |
-
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
| 86 |
-
return logits
|
| 87 |
-
|
| 88 |
-
@staticmethod
|
| 89 |
-
def logits_to_probs_cuda_graph(
|
| 90 |
-
logits: Tensor,
|
| 91 |
-
temperature: float,
|
| 92 |
-
top_k: int,
|
| 93 |
-
top_p: float,
|
| 94 |
-
):
|
| 95 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 96 |
-
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
| 97 |
-
sorted_indices_to_remove = cum_probs > top_p
|
| 98 |
-
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
| 99 |
-
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
|
| 100 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
| 101 |
-
|
| 102 |
-
logits = logits / max(temperature, 1e-5)
|
| 103 |
-
|
| 104 |
-
v, _ = torch.topk(logits, top_k)
|
| 105 |
-
pivot = v[:, -1].unsqueeze(-1)
|
| 106 |
-
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
| 107 |
-
|
| 108 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 109 |
-
return probs
|
| 110 |
-
|
| 111 |
-
def __sample(
|
| 112 |
-
self,
|
| 113 |
-
logits: Tensor,
|
| 114 |
-
previous_tokens: Tensor,
|
| 115 |
-
temperature: float,
|
| 116 |
-
top_k: int,
|
| 117 |
-
top_p: float,
|
| 118 |
-
repetition_penalty: float,
|
| 119 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 120 |
-
probs = self.logits_to_probs(
|
| 121 |
-
logits=logits,
|
| 122 |
-
previous_tokens=previous_tokens,
|
| 123 |
-
temperature=temperature,
|
| 124 |
-
top_k=top_k,
|
| 125 |
-
top_p=top_p,
|
| 126 |
-
repetition_penalty=repetition_penalty,
|
| 127 |
-
)
|
| 128 |
-
idx_next = self.multinomial_sample_one_no_sync(probs)
|
| 129 |
-
return idx_next, probs
|
| 130 |
-
|
| 131 |
-
def __sample_cuda_graph(
|
| 132 |
-
self,
|
| 133 |
-
logits: Tensor,
|
| 134 |
-
temperature: float,
|
| 135 |
-
top_k: int,
|
| 136 |
-
top_p: float,
|
| 137 |
-
):
|
| 138 |
-
probs = self.logits_to_probs_cuda_graph(
|
| 139 |
-
logits=logits,
|
| 140 |
-
temperature=temperature,
|
| 141 |
-
top_k=top_k,
|
| 142 |
-
top_p=top_p,
|
| 143 |
-
)
|
| 144 |
-
idx_next = self.multinomial_sample_one_no_sync(probs)
|
| 145 |
-
return idx_next
|
| 146 |
-
|
| 147 |
-
def capture(self, temperature: float, top_k: int, top_p: float):
|
| 148 |
-
t1=time.perf_counter()
|
| 149 |
-
s = torch.cuda.Stream()
|
| 150 |
-
s.wait_stream(torch.cuda.current_stream())
|
| 151 |
-
|
| 152 |
-
logits = self.logits
|
| 153 |
-
|
| 154 |
-
with torch.cuda.stream(s): # type: ignore
|
| 155 |
-
for _ in range(5):
|
| 156 |
-
self.__sample_cuda_graph(logits, temperature, top_k, top_p)
|
| 157 |
-
torch.cuda.current_stream().wait_stream(s)
|
| 158 |
-
|
| 159 |
-
self.__CUDAGraph = torch.cuda.CUDAGraph()
|
| 160 |
-
with torch.cuda.graph(self.__CUDAGraph):
|
| 161 |
-
self.samples = self.__sample_cuda_graph(logits, temperature, top_k, top_p)
|
| 162 |
-
torch.cuda.synchronize()
|
| 163 |
-
print("Sample",time.perf_counter()-t1)
|
| 164 |
-
|
| 165 |
# @torch.jit.script
|
| 166 |
def sample(
|
| 167 |
self,
|
|
@@ -172,7 +40,6 @@ class Sampler(nn.Module):
|
|
| 172 |
top_p: float,
|
| 173 |
repetition_penalty: float,
|
| 174 |
) -> Tensor:
|
| 175 |
-
|
| 176 |
previous_tokens = previous_tokens.long()
|
| 177 |
score = torch.gather(logits, dim=1, index=previous_tokens)
|
| 178 |
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
|
@@ -198,7 +65,6 @@ class Sampler(nn.Module):
|
|
| 198 |
return idx_next
|
| 199 |
|
| 200 |
|
| 201 |
-
|
| 202 |
class KVCacheABC(ABC, nn.Module):
|
| 203 |
def __init__(self, *args, **kwds) -> None:
|
| 204 |
super().__init__()
|
|
|
|
| 5 |
from __future__ import annotations
|
| 6 |
|
| 7 |
import os
|
| 8 |
+
import time
|
| 9 |
from abc import ABC, abstractmethod
|
| 10 |
from contextlib import nullcontext
|
| 11 |
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type
|
|
|
|
| 12 |
|
| 13 |
import torch
|
| 14 |
import torch._inductor.config
|
|
|
|
| 30 |
super().__init__()
|
| 31 |
self.batch_size = batch_size
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# @torch.jit.script
|
| 34 |
def sample(
|
| 35 |
self,
|
|
|
|
| 40 |
top_p: float,
|
| 41 |
repetition_penalty: float,
|
| 42 |
) -> Tensor:
|
|
|
|
| 43 |
previous_tokens = previous_tokens.long()
|
| 44 |
score = torch.gather(logits, dim=1, index=previous_tokens)
|
| 45 |
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
|
|
|
| 65 |
return idx_next
|
| 66 |
|
| 67 |
|
|
|
|
| 68 |
class KVCacheABC(ABC, nn.Module):
|
| 69 |
def __init__(self, *args, **kwds) -> None:
|
| 70 |
super().__init__()
|
AR/models/t2s_model_flash_attn.py
CHANGED
|
@@ -5,10 +5,10 @@ Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import traceback
|
| 8 |
-
from typing import Dict, List, Tuple
|
| 9 |
-
import gradio as gr
|
| 10 |
|
| 11 |
import flash_attn # type: ignore
|
|
|
|
| 12 |
import torch
|
| 13 |
import torch.nn as nn
|
| 14 |
from tqdm import tqdm
|
|
@@ -54,7 +54,7 @@ class Attention(AttentionABC):
|
|
| 54 |
|
| 55 |
attn: Tensor = flash_attn.flash_attn_with_kvcache(
|
| 56 |
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
|
| 57 |
-
)
|
| 58 |
|
| 59 |
attn = self.dropout.forward(attn)
|
| 60 |
|
|
@@ -219,10 +219,10 @@ class CUDAGraphRunner:
|
|
| 219 |
|
| 220 |
self.decoder_path: os.PathLike
|
| 221 |
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
|
| 222 |
-
|
| 223 |
-
self.graph: Optional[torch.cuda.CUDAGraph]= None
|
| 224 |
-
self.xy_pos_ = torch.rand((1, 1, decoder_model.embedding_dim),device=device).to(dtype)
|
| 225 |
-
self.xy_dec_ = torch.rand((1, 1, decoder_model.embedding_dim),device=device).to(dtype)
|
| 226 |
self.kv_cache = decoder_model.init_cache(1)
|
| 227 |
self.input_pos = torch.tensor([10]).int().cuda()
|
| 228 |
|
|
@@ -230,13 +230,13 @@ class CUDAGraphRunner:
|
|
| 230 |
with self.device:
|
| 231 |
for i in self.kv_cache:
|
| 232 |
i.empty()
|
| 233 |
-
|
| 234 |
decoder = self.decoder_model
|
| 235 |
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
|
| 236 |
self.input_pos.copy_(session.input_pos)
|
| 237 |
-
|
| 238 |
t1 = 0.0
|
| 239 |
-
y = session.y
|
| 240 |
bsz = y.size(0)
|
| 241 |
torch_profiler = TorchProfiler(request.debug)
|
| 242 |
with torch_profiler.profiler():
|
|
@@ -271,14 +271,14 @@ class CUDAGraphRunner:
|
|
| 271 |
*args,
|
| 272 |
**kwds,
|
| 273 |
)
|
| 274 |
-
|
| 275 |
decoder.post_forward(idx, session)
|
| 276 |
logits = decoder.ar_predict_layer(xy_dec[:, -1])
|
| 277 |
self.input_pos.add_(1)
|
| 278 |
|
| 279 |
if idx == 0:
|
| 280 |
logits[:, -1] = float("-inf")
|
| 281 |
-
|
| 282 |
with torch_profiler.record("Sampling"):
|
| 283 |
samples = session.sampler.sample(
|
| 284 |
logits=logits,
|
|
@@ -291,22 +291,20 @@ class CUDAGraphRunner:
|
|
| 291 |
|
| 292 |
session.y = torch.cat([session.y, samples], dim=1)
|
| 293 |
|
| 294 |
-
|
| 295 |
with torch_profiler.record("EOS"):
|
| 296 |
argmax_token = torch.argmax(logits, dim=-1)
|
| 297 |
sample_token = samples.squeeze(1)
|
| 298 |
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
|
| 299 |
-
|
| 300 |
newly_done_mask = EOS_mask & (~session.completed)
|
| 301 |
newly_done_indices = newly_done_mask.nonzero()
|
| 302 |
-
|
| 303 |
-
|
| 304 |
if newly_done_indices.numel() > 0:
|
| 305 |
session.y_results[newly_done_indices[0]] = session.y[
|
| 306 |
newly_done_indices[0], session.y_len : -1
|
| 307 |
].squeeze(0)
|
| 308 |
session.completed[newly_done_indices] = True
|
| 309 |
-
|
| 310 |
if torch.all(session.completed).item():
|
| 311 |
if session.y.size(1) == 0:
|
| 312 |
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
|
|
@@ -316,13 +314,15 @@ class CUDAGraphRunner:
|
|
| 316 |
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
|
| 317 |
)
|
| 318 |
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
|
| 319 |
-
gr.Info(
|
|
|
|
|
|
|
| 320 |
break
|
| 321 |
-
|
| 322 |
if (
|
| 323 |
-
|
| 324 |
-
and (session.y.size(1) - session.y_len) > request.early_stop_num
|
| 325 |
-
):
|
| 326 |
for i in range(bsz):
|
| 327 |
if not session.completed[i].item():
|
| 328 |
session.y_results[i] = session.y[i, session.y_len :]
|
|
@@ -339,7 +339,7 @@ class CUDAGraphRunner:
|
|
| 339 |
|
| 340 |
if idx == 51:
|
| 341 |
torch_profiler.end()
|
| 342 |
-
|
| 343 |
if idx % 100 == 0:
|
| 344 |
match session.device.type:
|
| 345 |
case "cuda":
|
|
@@ -360,7 +360,7 @@ class CUDAGraphRunner:
|
|
| 360 |
torch.xpu.empty_cache()
|
| 361 |
case "mtia":
|
| 362 |
torch.mtia.empty_cache()
|
| 363 |
-
|
| 364 |
torch_profiler.end()
|
| 365 |
return session.y_results[: request.valid_length]
|
| 366 |
|
|
|
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import traceback
|
| 8 |
+
from typing import Dict, List, Optional, Tuple
|
|
|
|
| 9 |
|
| 10 |
import flash_attn # type: ignore
|
| 11 |
+
import gradio as gr
|
| 12 |
import torch
|
| 13 |
import torch.nn as nn
|
| 14 |
from tqdm import tqdm
|
|
|
|
| 54 |
|
| 55 |
attn: Tensor = flash_attn.flash_attn_with_kvcache(
|
| 56 |
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
|
| 57 |
+
) # type: ignore
|
| 58 |
|
| 59 |
attn = self.dropout.forward(attn)
|
| 60 |
|
|
|
|
| 219 |
|
| 220 |
self.decoder_path: os.PathLike
|
| 221 |
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
|
| 222 |
+
|
| 223 |
+
self.graph: Optional[torch.cuda.CUDAGraph] = None
|
| 224 |
+
self.xy_pos_ = torch.rand((1, 1, decoder_model.embedding_dim), device=device).to(dtype)
|
| 225 |
+
self.xy_dec_ = torch.rand((1, 1, decoder_model.embedding_dim), device=device).to(dtype)
|
| 226 |
self.kv_cache = decoder_model.init_cache(1)
|
| 227 |
self.input_pos = torch.tensor([10]).int().cuda()
|
| 228 |
|
|
|
|
| 230 |
with self.device:
|
| 231 |
for i in self.kv_cache:
|
| 232 |
i.empty()
|
| 233 |
+
|
| 234 |
decoder = self.decoder_model
|
| 235 |
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
|
| 236 |
self.input_pos.copy_(session.input_pos)
|
| 237 |
+
|
| 238 |
t1 = 0.0
|
| 239 |
+
y = session.y
|
| 240 |
bsz = y.size(0)
|
| 241 |
torch_profiler = TorchProfiler(request.debug)
|
| 242 |
with torch_profiler.profiler():
|
|
|
|
| 271 |
*args,
|
| 272 |
**kwds,
|
| 273 |
)
|
| 274 |
+
|
| 275 |
decoder.post_forward(idx, session)
|
| 276 |
logits = decoder.ar_predict_layer(xy_dec[:, -1])
|
| 277 |
self.input_pos.add_(1)
|
| 278 |
|
| 279 |
if idx == 0:
|
| 280 |
logits[:, -1] = float("-inf")
|
| 281 |
+
|
| 282 |
with torch_profiler.record("Sampling"):
|
| 283 |
samples = session.sampler.sample(
|
| 284 |
logits=logits,
|
|
|
|
| 291 |
|
| 292 |
session.y = torch.cat([session.y, samples], dim=1)
|
| 293 |
|
|
|
|
| 294 |
with torch_profiler.record("EOS"):
|
| 295 |
argmax_token = torch.argmax(logits, dim=-1)
|
| 296 |
sample_token = samples.squeeze(1)
|
| 297 |
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
|
| 298 |
+
|
| 299 |
newly_done_mask = EOS_mask & (~session.completed)
|
| 300 |
newly_done_indices = newly_done_mask.nonzero()
|
| 301 |
+
|
|
|
|
| 302 |
if newly_done_indices.numel() > 0:
|
| 303 |
session.y_results[newly_done_indices[0]] = session.y[
|
| 304 |
newly_done_indices[0], session.y_len : -1
|
| 305 |
].squeeze(0)
|
| 306 |
session.completed[newly_done_indices] = True
|
| 307 |
+
|
| 308 |
if torch.all(session.completed).item():
|
| 309 |
if session.y.size(1) == 0:
|
| 310 |
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
|
|
|
|
| 314 |
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
|
| 315 |
)
|
| 316 |
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
|
| 317 |
+
gr.Info(
|
| 318 |
+
f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s", duration=0.75
|
| 319 |
+
)
|
| 320 |
break
|
| 321 |
+
|
| 322 |
if (
|
| 323 |
+
request.early_stop_num != -1
|
| 324 |
+
and (session.y.size(1) - session.y_len) > request.early_stop_num
|
| 325 |
+
) or idx == 1499:
|
| 326 |
for i in range(bsz):
|
| 327 |
if not session.completed[i].item():
|
| 328 |
session.y_results[i] = session.y[i, session.y_len :]
|
|
|
|
| 339 |
|
| 340 |
if idx == 51:
|
| 341 |
torch_profiler.end()
|
| 342 |
+
|
| 343 |
if idx % 100 == 0:
|
| 344 |
match session.device.type:
|
| 345 |
case "cuda":
|
|
|
|
| 360 |
torch.xpu.empty_cache()
|
| 361 |
case "mtia":
|
| 362 |
torch.mtia.empty_cache()
|
| 363 |
+
|
| 364 |
torch_profiler.end()
|
| 365 |
return session.y_results[: request.valid_length]
|
| 366 |
|
AR/models/utils.py
DELETED
|
@@ -1,229 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from typing import Tuple
|
| 6 |
-
|
| 7 |
-
def sequence_mask(length, max_length=None):
|
| 8 |
-
if max_length is None:
|
| 9 |
-
max_length = length.max()
|
| 10 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 11 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
| 15 |
-
"""
|
| 16 |
-
Args:
|
| 17 |
-
lengths:
|
| 18 |
-
A 1-D tensor containing sentence lengths.
|
| 19 |
-
max_len:
|
| 20 |
-
The length of masks.
|
| 21 |
-
Returns:
|
| 22 |
-
Return a 2-D bool tensor, where masked positions
|
| 23 |
-
are filled with `True` and non-masked positions are
|
| 24 |
-
filled with `False`.
|
| 25 |
-
|
| 26 |
-
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
| 27 |
-
#>>> make_pad_mask(lengths)
|
| 28 |
-
tensor([[False, True, True, True, True],
|
| 29 |
-
[False, False, False, True, True],
|
| 30 |
-
[False, False, True, True, True],
|
| 31 |
-
[False, False, False, False, False]])
|
| 32 |
-
"""
|
| 33 |
-
assert lengths.ndim == 1, lengths.ndim
|
| 34 |
-
max_len = max(max_len, lengths.max())
|
| 35 |
-
n = lengths.size(0)
|
| 36 |
-
seq_range = torch.arange(0, max_len, device=lengths.device)
|
| 37 |
-
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
| 38 |
-
|
| 39 |
-
return expaned_lengths >= lengths.unsqueeze(-1)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
| 43 |
-
def top_k_top_p_filtering(
|
| 44 |
-
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
| 45 |
-
):
|
| 46 |
-
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
| 47 |
-
Args:
|
| 48 |
-
logits: logits distribution shape (batch size, vocabulary size)
|
| 49 |
-
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
| 50 |
-
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
| 51 |
-
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
| 52 |
-
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
| 53 |
-
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
| 54 |
-
"""
|
| 55 |
-
if top_k > 0:
|
| 56 |
-
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
| 57 |
-
# Remove all tokens with a probability less than the last token of the top-k
|
| 58 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 59 |
-
logits[indices_to_remove] = filter_value
|
| 60 |
-
|
| 61 |
-
if top_p < 1.0:
|
| 62 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 63 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 64 |
-
|
| 65 |
-
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
| 66 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
| 67 |
-
if min_tokens_to_keep > 1:
|
| 68 |
-
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
| 69 |
-
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
| 70 |
-
# Shift the indices to the right to keep also the first token above the threshold
|
| 71 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 72 |
-
sorted_indices_to_remove[..., 0] = 0
|
| 73 |
-
|
| 74 |
-
# scatter sorted tensors to original indexing
|
| 75 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 76 |
-
1, sorted_indices, sorted_indices_to_remove
|
| 77 |
-
)
|
| 78 |
-
logits[indices_to_remove] = filter_value
|
| 79 |
-
return logits
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
| 83 |
-
# temperature: (`optional`) float
|
| 84 |
-
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
| 85 |
-
# top_k: (`optional`) int
|
| 86 |
-
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
| 87 |
-
# top_p: (`optional`) float
|
| 88 |
-
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
| 89 |
-
|
| 90 |
-
# Temperature (higher temperature => more likely to sample low probability tokens)
|
| 91 |
-
if temperature != 1.0:
|
| 92 |
-
logits = logits / temperature
|
| 93 |
-
# Top-p/top-k filtering
|
| 94 |
-
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 95 |
-
# Sample
|
| 96 |
-
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
| 97 |
-
return token
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
from typing import Optional, Tuple
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def multinomial_sample_one_no_sync(
|
| 104 |
-
probs_sort,
|
| 105 |
-
): # Does multinomial sampling without a cuda synchronization
|
| 106 |
-
q = torch.empty_like(probs_sort).exponential_(1)
|
| 107 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def logits_to_probs(
|
| 111 |
-
logits,
|
| 112 |
-
previous_tokens: Optional[torch.Tensor] = None,
|
| 113 |
-
temperature: float = 1.0,
|
| 114 |
-
top_k: Optional[int] = None,
|
| 115 |
-
top_p: Optional[int] = None,
|
| 116 |
-
repetition_penalty: float = 1.0,
|
| 117 |
-
):
|
| 118 |
-
if previous_tokens is not None:
|
| 119 |
-
previous_tokens = previous_tokens.squeeze()
|
| 120 |
-
# print(logits.shape,previous_tokens.shape)
|
| 121 |
-
# pdb.set_trace()
|
| 122 |
-
if previous_tokens is not None and repetition_penalty != 1.0:
|
| 123 |
-
previous_tokens = previous_tokens.long()
|
| 124 |
-
score = torch.gather(logits, dim=0, index=previous_tokens)
|
| 125 |
-
score = torch.where(
|
| 126 |
-
score < 0, score * repetition_penalty, score / repetition_penalty
|
| 127 |
-
)
|
| 128 |
-
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
| 129 |
-
|
| 130 |
-
if top_p is not None and top_p < 1.0:
|
| 131 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 132 |
-
cum_probs = torch.cumsum(
|
| 133 |
-
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
| 134 |
-
)
|
| 135 |
-
sorted_indices_to_remove = cum_probs > top_p
|
| 136 |
-
sorted_indices_to_remove[0] = False # keep at least one option
|
| 137 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 138 |
-
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
| 139 |
-
)
|
| 140 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
| 141 |
-
|
| 142 |
-
logits = logits / max(temperature, 1e-5)
|
| 143 |
-
|
| 144 |
-
if top_k is not None:
|
| 145 |
-
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 146 |
-
pivot = v.select(-1, -1).unsqueeze(-1)
|
| 147 |
-
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
| 148 |
-
|
| 149 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 150 |
-
return probs
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
def sample(
|
| 154 |
-
logits,
|
| 155 |
-
previous_tokens: Optional[torch.Tensor] = None,
|
| 156 |
-
**sampling_kwargs,
|
| 157 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 158 |
-
probs = logits_to_probs(
|
| 159 |
-
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
| 160 |
-
)
|
| 161 |
-
idx_next = multinomial_sample_one_no_sync(probs)
|
| 162 |
-
return idx_next, probs
|
| 163 |
-
|
| 164 |
-
def dpo_loss(policy_chosen_logps: torch.FloatTensor,
|
| 165 |
-
policy_rejected_logps: torch.FloatTensor,
|
| 166 |
-
reference_chosen_logps: torch.FloatTensor,
|
| 167 |
-
reference_rejected_logps: torch.FloatTensor,
|
| 168 |
-
beta: float,
|
| 169 |
-
reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
| 170 |
-
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
| 171 |
-
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
| 172 |
-
|
| 173 |
-
if reference_free:
|
| 174 |
-
ref_logratios = 0
|
| 175 |
-
|
| 176 |
-
logits = pi_logratios - ref_logratios
|
| 177 |
-
|
| 178 |
-
losses = -F.logsigmoid(beta * logits)
|
| 179 |
-
chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
| 180 |
-
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
| 181 |
-
|
| 182 |
-
return losses.mean(), chosen_rewards, rejected_rewards
|
| 183 |
-
|
| 184 |
-
def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 185 |
-
|
| 186 |
-
# dummy token; we'll ignore the losses on these tokens later
|
| 187 |
-
|
| 188 |
-
per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2)
|
| 189 |
-
per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2)
|
| 190 |
-
|
| 191 |
-
return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
|
| 192 |
-
|
| 193 |
-
def make_reject_y(y_o, y_lens):
|
| 194 |
-
def repeat_P(y):
|
| 195 |
-
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
| 196 |
-
pre = y[:range_idx[0]]
|
| 197 |
-
shf = y[range_idx[1]:]
|
| 198 |
-
range_text = y[range_idx[0]:range_idx[1]]
|
| 199 |
-
new_y = torch.cat([pre, range_text, range_text, shf])
|
| 200 |
-
return new_y
|
| 201 |
-
def lost_P(y):
|
| 202 |
-
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
| 203 |
-
pre = y[:range_idx[0]]
|
| 204 |
-
shf = y[range_idx[1]:]
|
| 205 |
-
range_text = y[range_idx[0]:range_idx[1]]
|
| 206 |
-
new_y = torch.cat([pre, shf])
|
| 207 |
-
return new_y
|
| 208 |
-
bs = len(y_lens)
|
| 209 |
-
reject_y = []
|
| 210 |
-
reject_y_lens = []
|
| 211 |
-
for b in range(bs):
|
| 212 |
-
process_item_idx = torch.randint(0, 1, size=(1, ))[0]
|
| 213 |
-
if process_item_idx == 0:
|
| 214 |
-
new_y = repeat_P(y_o[b])
|
| 215 |
-
reject_y.append(new_y)
|
| 216 |
-
reject_y_lens.append(len(new_y))
|
| 217 |
-
elif process_item_idx==1:
|
| 218 |
-
new_y = lost_P(y_o[b])
|
| 219 |
-
reject_y.append(new_y)
|
| 220 |
-
reject_y_lens.append(len(new_y))
|
| 221 |
-
max_length = max(reject_y_lens)
|
| 222 |
-
for b in range(bs):
|
| 223 |
-
pad_length = max_length - reject_y_lens[b]
|
| 224 |
-
reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
|
| 225 |
-
|
| 226 |
-
reject_y = torch.stack(reject_y, dim = 0)
|
| 227 |
-
reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
|
| 228 |
-
|
| 229 |
-
return reject_y, reject_y_lens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_webui.py
CHANGED
|
@@ -52,13 +52,12 @@ import os
|
|
| 52 |
import pdb
|
| 53 |
import re
|
| 54 |
import sys
|
|
|
|
| 55 |
|
| 56 |
import LangSegment
|
| 57 |
import spaces
|
| 58 |
import torch
|
| 59 |
|
| 60 |
-
import threading
|
| 61 |
-
|
| 62 |
lock = threading.Lock()
|
| 63 |
|
| 64 |
version = "v2" # os.environ.get("version","v2")
|
|
@@ -544,7 +543,7 @@ def get_tts_wav(
|
|
| 544 |
if i_text in cache and if_freeze == True:
|
| 545 |
pred_semantic = cache[i_text]
|
| 546 |
else:
|
| 547 |
-
with torch.no_grad(),lock:
|
| 548 |
t2s_request = T2SRequest(
|
| 549 |
[all_phoneme_ids.squeeze(0)],
|
| 550 |
all_phoneme_len,
|
|
|
|
| 52 |
import pdb
|
| 53 |
import re
|
| 54 |
import sys
|
| 55 |
+
import threading
|
| 56 |
|
| 57 |
import LangSegment
|
| 58 |
import spaces
|
| 59 |
import torch
|
| 60 |
|
|
|
|
|
|
|
| 61 |
lock = threading.Lock()
|
| 62 |
|
| 63 |
version = "v2" # os.environ.get("version","v2")
|
|
|
|
| 543 |
if i_text in cache and if_freeze == True:
|
| 544 |
pred_semantic = cache[i_text]
|
| 545 |
else:
|
| 546 |
+
with torch.no_grad(), lock:
|
| 547 |
t2s_request = T2SRequest(
|
| 548 |
[all_phoneme_ids.squeeze(0)],
|
| 549 |
all_phoneme_len,
|