Spaces:
Runtime error
Runtime error
Franco Astegiano
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""TF-Hub: Fast Style Transfer for Arbitrary Styles.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf2_arbitrary_image_stylization.ipynb
|
| 8 |
+
|
| 9 |
+
##### Copyright 2019 The TensorFlow Hub Authors.
|
| 10 |
+
|
| 11 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
# Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved.
|
| 15 |
+
#
|
| 16 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 17 |
+
# you may not use this file except in compliance with the License.
|
| 18 |
+
# You may obtain a copy of the License at
|
| 19 |
+
#
|
| 20 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 21 |
+
#
|
| 22 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 23 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 24 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 25 |
+
# See the License for the specific language governing permissions and
|
| 26 |
+
# limitations under the License.
|
| 27 |
+
# ==============================================================================
|
| 28 |
+
|
| 29 |
+
"""# Fast Style Transfer for Arbitrary Styles
|
| 30 |
+
|
| 31 |
+
<table class="tfo-notebook-buttons" align="left">
|
| 32 |
+
<td>
|
| 33 |
+
<a target="_blank" href="https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a>
|
| 34 |
+
</td>
|
| 35 |
+
<td>
|
| 36 |
+
<a target="_blank" href="https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf2_arbitrary_image_stylization.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a>
|
| 37 |
+
</td>
|
| 38 |
+
<td>
|
| 39 |
+
<a target="_blank" href="https://github.com/tensorflow/hub/blob/master/examples/colab/tf2_arbitrary_image_stylization.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View on GitHub</a>
|
| 40 |
+
</td>
|
| 41 |
+
<td>
|
| 42 |
+
<a href="https://storage.googleapis.com/tensorflow_docs/hub/examples/colab/tf2_arbitrary_image_stylization.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a>
|
| 43 |
+
</td>
|
| 44 |
+
<td>
|
| 45 |
+
<a href="https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2"><img src="https://www.tensorflow.org/images/hub_logo_32px.png" />See TF Hub model</a>
|
| 46 |
+
</td>
|
| 47 |
+
</table>
|
| 48 |
+
|
| 49 |
+
Based on the model code in [magenta](https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization) and the publication:
|
| 50 |
+
|
| 51 |
+
[Exploring the structure of a real-time, arbitrary neural artistic stylization
|
| 52 |
+
network](https://arxiv.org/abs/1705.06830).
|
| 53 |
+
*Golnaz Ghiasi, Honglak Lee,
|
| 54 |
+
Manjunath Kudlur, Vincent Dumoulin, Jonathon Shlens*,
|
| 55 |
+
Proceedings of the British Machine Vision Conference (BMVC), 2017.
|
| 56 |
+
|
| 57 |
+
## Setup
|
| 58 |
+
|
| 59 |
+
Let's start with importing TF2 and all relevant dependencies.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
import functools
|
| 63 |
+
import os
|
| 64 |
+
|
| 65 |
+
from matplotlib import gridspec
|
| 66 |
+
import matplotlib.pylab as plt
|
| 67 |
+
import numpy as np
|
| 68 |
+
import tensorflow as tf
|
| 69 |
+
import tensorflow_hub as hub
|
| 70 |
+
import gradio as gr
|
| 71 |
+
|
| 72 |
+
# @title Define image loading and visualization functions { display-mode: "form" }
|
| 73 |
+
|
| 74 |
+
def crop_center(image):
|
| 75 |
+
"""Returns a cropped square image."""
|
| 76 |
+
shape = image.shape
|
| 77 |
+
new_shape = min(shape[1], shape[2])
|
| 78 |
+
offset_y = max(shape[1] - shape[2], 0) // 2
|
| 79 |
+
offset_x = max(shape[2] - shape[1], 0) // 2
|
| 80 |
+
image = tf.image.crop_to_bounding_box(
|
| 81 |
+
image, offset_y, offset_x, new_shape, new_shape)
|
| 82 |
+
return image
|
| 83 |
+
|
| 84 |
+
@functools.lru_cache(maxsize=None)
|
| 85 |
+
def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True):
|
| 86 |
+
"""Loads and preprocesses images."""
|
| 87 |
+
# Cache image file locally.
|
| 88 |
+
image_path = tf.keras.utils.get_file(os.path.basename(image_url)[-128:], image_url)
|
| 89 |
+
# Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1].
|
| 90 |
+
img = tf.io.decode_image(
|
| 91 |
+
tf.io.read_file(image_path),
|
| 92 |
+
channels=3, dtype=tf.float32)[tf.newaxis, ...]
|
| 93 |
+
img = crop_center(img)
|
| 94 |
+
img = tf.image.resize(img, image_size, preserve_aspect_ratio=True)
|
| 95 |
+
return img
|
| 96 |
+
|
| 97 |
+
def show_n(images, titles=('',)):
|
| 98 |
+
n = len(images)
|
| 99 |
+
image_sizes = [image.shape[1] for image in images]
|
| 100 |
+
w = (image_sizes[0] * 6) // 320
|
| 101 |
+
plt.figure(figsize=(w * n, w))
|
| 102 |
+
gs = gridspec.GridSpec(1, n, width_ratios=image_sizes)
|
| 103 |
+
for i in range(n):
|
| 104 |
+
plt.subplot(gs[i])
|
| 105 |
+
plt.imshow(images[i][0], aspect='equal')
|
| 106 |
+
plt.axis('off')
|
| 107 |
+
plt.title(titles[i] if len(titles) > i else '')
|
| 108 |
+
plt.show()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
"""Let's get as well some images to play with."""
|
| 114 |
+
|
| 115 |
+
# @title Load example images { display-mode: "form" }
|
| 116 |
+
|
| 117 |
+
#content_image_url = 'https://live.staticflickr.com/65535/52032998695_f57c61746c_c.jpg' # @param {type:"string"}
|
| 118 |
+
#style_image_url = 'https://live.staticflickr.com/65535/52032731604_a815a0b19f_c.jpg' # @param {type:"string"}
|
| 119 |
+
output_image_size = 384 # @param {type:"integer"}
|
| 120 |
+
|
| 121 |
+
# The content image size can be arbitrary.
|
| 122 |
+
content_img_size = (output_image_size, output_image_size)
|
| 123 |
+
# The style prediction model was trained with image size 256 and it's the
|
| 124 |
+
# recommended image size for the style image (though, other sizes work as
|
| 125 |
+
# well but will lead to different results).
|
| 126 |
+
style_img_size = (256, 256) # Recommended to keep it at 256.
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Load images from app
|
| 131 |
+
content_image_input = gr.inputs.Image(label="Content Image")
|
| 132 |
+
style_image_input = gr.inputs.Image(shape=(256, 256), label="Style Image")
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
content_image = load_image(content_image_input, content_img_size)
|
| 137 |
+
style_image = load_image(style_image_input, style_img_size)
|
| 138 |
+
style_image = tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME')
|
| 139 |
+
show_n([content_image, style_image], ['Content image', 'Style image'])
|
| 140 |
+
|
| 141 |
+
"""## Import TF Hub module"""
|
| 142 |
+
|
| 143 |
+
# Load TF Hub module.
|
| 144 |
+
|
| 145 |
+
hub_handle = 'https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2'
|
| 146 |
+
hub_module = hub.load(hub_handle)
|
| 147 |
+
|
| 148 |
+
"""The signature of this hub module for image stylization is:
|
| 149 |
+
```
|
| 150 |
+
outputs = hub_module(content_image, style_image)
|
| 151 |
+
stylized_image = outputs[0]
|
| 152 |
+
```
|
| 153 |
+
Where `content_image`, `style_image`, and `stylized_image` are expected to be 4-D Tensors with shapes `[batch_size, image_height, image_width, 3]`.
|
| 154 |
+
|
| 155 |
+
In the current example we provide only single images and therefore the batch dimension is 1, but one can use the same module to process more images at the same time.
|
| 156 |
+
|
| 157 |
+
The input and output values of the images should be in the range [0, 1].
|
| 158 |
+
|
| 159 |
+
The shapes of content and style image don't have to match. Output image shape
|
| 160 |
+
is the same as the content image shape.
|
| 161 |
+
|
| 162 |
+
## Demonstrate image stylization
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
# Stylize content image with given style image.
|
| 166 |
+
# This is pretty fast within a few milliseconds on a GPU.
|
| 167 |
+
|
| 168 |
+
def modify(imageinput,style_input):
|
| 169 |
+
content_image = load_image(imageinput, content_img_size)
|
| 170 |
+
style_image = load_image(style_input, style_img_size)
|
| 171 |
+
style_image = tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME')
|
| 172 |
+
#show_n([content_image, style_image], ['Content image', 'Style image'])
|
| 173 |
+
outputs = hub_module(tf.constant(imageinput), tf.constant(style_input))
|
| 174 |
+
return outputs[0]
|
| 175 |
+
#stylized_image = outputs[0]
|
| 176 |
+
|
| 177 |
+
# Visualize input images and the generated stylized image.
|
| 178 |
+
|
| 179 |
+
#show_n([content_image, style_image, stylized_image], titles=['Original content image', 'Style image', 'Stylized image'])
|
| 180 |
+
|
| 181 |
+
# Gradio app
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
app_interface = gr.Interface(modify,
|
| 185 |
+
inputs=[content_image_input, style_image_input],
|
| 186 |
+
outputs="image",
|
| 187 |
+
title="Fast Neural Style Transfer",
|
| 188 |
+
description="Gradio demo for Fast Neural Style Transfer using a pretrained Image Stylization model from TensorFlow Hub. To use it, simply upload a content image and style image, or click one of the examples to load them. To learn more about the project, please find the references listed below.",
|
| 189 |
+
)
|
| 190 |
+
app_interface.launch()
|
| 191 |
+
|