Upload 388 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ComfyUI/CODEOWNERS +1 -0
- ComfyUI/CONTRIBUTING.md +41 -0
- ComfyUI/comfy/__pycache__/checkpoint_pickle.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/cli_args.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/clip_model.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/clip_vision.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/conds.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/controlnet.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/diffusers_convert.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/diffusers_load.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/gligen.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/latent_formats.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/lora.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/model_base.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/model_detection.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/model_management.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/model_patcher.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/model_sampling.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/ops.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/options.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/sample.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/sampler_helpers.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/samplers.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/sd.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/sd1_clip.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/sdxl_clip.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/supported_models.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/supported_models_base.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/types.cpython-310.pyc +0 -0
- ComfyUI/comfy/__pycache__/utils.cpython-310.pyc +0 -0
- ComfyUI/comfy/checkpoint_pickle.py +13 -0
- ComfyUI/comfy/cldm/__pycache__/cldm.cpython-310.pyc +0 -0
- ComfyUI/comfy/cldm/__pycache__/control_types.cpython-310.pyc +0 -0
- ComfyUI/comfy/cldm/__pycache__/mmdit.cpython-310.pyc +0 -0
- ComfyUI/comfy/cldm/cldm.py +437 -0
- ComfyUI/comfy/cldm/control_types.py +10 -0
- ComfyUI/comfy/cldm/mmdit.py +77 -0
- ComfyUI/comfy/cli_args.py +180 -0
- ComfyUI/comfy/clip_config_bigg.json +23 -0
- ComfyUI/comfy/clip_model.py +196 -0
- ComfyUI/comfy/clip_vision.py +121 -0
- ComfyUI/comfy/clip_vision_config_g.json +18 -0
- ComfyUI/comfy/clip_vision_config_h.json +18 -0
- ComfyUI/comfy/clip_vision_config_vitl.json +18 -0
- ComfyUI/comfy/clip_vision_config_vitl_336.json +18 -0
- ComfyUI/comfy/conds.py +83 -0
- ComfyUI/comfy/controlnet.py +622 -0
- ComfyUI/comfy/diffusers_convert.py +281 -0
- ComfyUI/comfy/diffusers_load.py +36 -0
- ComfyUI/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc +0 -0
ComfyUI/CODEOWNERS
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
* @comfyanonymous
|
ComfyUI/CONTRIBUTING.md
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Contributing to ComfyUI
|
| 2 |
+
|
| 3 |
+
Welcome, and thank you for your interest in contributing to ComfyUI!
|
| 4 |
+
|
| 5 |
+
There are several ways in which you can contribute, beyond writing code. The goal of this document is to provide a high-level overview of how you can get involved.
|
| 6 |
+
|
| 7 |
+
## Asking Questions
|
| 8 |
+
|
| 9 |
+
Have a question? Instead of opening an issue, please ask on [Discord](https://comfy.org/discord) or [Matrix](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) channels. Our team and the community will help you.
|
| 10 |
+
|
| 11 |
+
## Providing Feedback
|
| 12 |
+
|
| 13 |
+
Your comments and feedback are welcome, and the development team is available via a handful of different channels.
|
| 14 |
+
|
| 15 |
+
See the `#bug-report`, `#feature-request` and `#feedback` channels on Discord.
|
| 16 |
+
|
| 17 |
+
## Reporting Issues
|
| 18 |
+
|
| 19 |
+
Have you identified a reproducible problem in ComfyUI? Do you have a feature request? We want to hear about it! Here's how you can report your issue as effectively as possible.
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
### Look For an Existing Issue
|
| 23 |
+
|
| 24 |
+
Before you create a new issue, please do a search in [open issues](https://github.com/comfyanonymous/ComfyUI/issues) to see if the issue or feature request has already been filed.
|
| 25 |
+
|
| 26 |
+
If you find your issue already exists, make relevant comments and add your [reaction](https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments). Use a reaction in place of a "+1" comment:
|
| 27 |
+
|
| 28 |
+
* 👍 - upvote
|
| 29 |
+
* 👎 - downvote
|
| 30 |
+
|
| 31 |
+
If you cannot find an existing issue that describes your bug or feature, create a new issue. We have an issue template in place to organize new issues.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
### Creating Pull Requests
|
| 35 |
+
|
| 36 |
+
* Please refer to the article on [creating pull requests](https://github.com/comfyanonymous/ComfyUI/wiki/How-to-Contribute-Code) and contributing to this project.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Thank You
|
| 40 |
+
|
| 41 |
+
Your contributions to open source, large or small, make great projects like this possible. Thank you for taking the time to contribute.
|
ComfyUI/comfy/__pycache__/checkpoint_pickle.cpython-310.pyc
ADDED
|
Binary file (729 Bytes). View file
|
|
|
ComfyUI/comfy/__pycache__/cli_args.cpython-310.pyc
ADDED
|
Binary file (8.73 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/clip_model.cpython-310.pyc
ADDED
|
Binary file (8.9 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/clip_vision.cpython-310.pyc
ADDED
|
Binary file (5.38 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/conds.cpython-310.pyc
ADDED
|
Binary file (3.3 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/controlnet.cpython-310.pyc
ADDED
|
Binary file (18.9 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/diffusers_convert.cpython-310.pyc
ADDED
|
Binary file (7.2 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/diffusers_load.cpython-310.pyc
ADDED
|
Binary file (1.33 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/gligen.cpython-310.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/latent_formats.cpython-310.pyc
ADDED
|
Binary file (6.53 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/lora.cpython-310.pyc
ADDED
|
Binary file (6.64 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/model_base.cpython-310.pyc
ADDED
|
Binary file (24.4 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/model_detection.cpython-310.pyc
ADDED
|
Binary file (15.9 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/model_management.cpython-310.pyc
ADDED
|
Binary file (21.8 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/model_patcher.cpython-310.pyc
ADDED
|
Binary file (16.2 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/model_sampling.cpython-310.pyc
ADDED
|
Binary file (12.2 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/ops.cpython-310.pyc
ADDED
|
Binary file (9.69 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/options.cpython-310.pyc
ADDED
|
Binary file (299 Bytes). View file
|
|
|
ComfyUI/comfy/__pycache__/sample.cpython-310.pyc
ADDED
|
Binary file (2.88 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/sampler_helpers.cpython-310.pyc
ADDED
|
Binary file (2.74 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/samplers.cpython-310.pyc
ADDED
|
Binary file (22.7 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/sd.cpython-310.pyc
ADDED
|
Binary file (23.1 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/sd1_clip.cpython-310.pyc
ADDED
|
Binary file (17.5 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/sdxl_clip.cpython-310.pyc
ADDED
|
Binary file (5.65 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/supported_models.cpython-310.pyc
ADDED
|
Binary file (19.4 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/supported_models_base.cpython-310.pyc
ADDED
|
Binary file (4.05 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/types.cpython-310.pyc
ADDED
|
Binary file (1.38 kB). View file
|
|
|
ComfyUI/comfy/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (23 kB). View file
|
|
|
ComfyUI/comfy/checkpoint_pickle.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
|
| 3 |
+
load = pickle.load
|
| 4 |
+
|
| 5 |
+
class Empty:
|
| 6 |
+
pass
|
| 7 |
+
|
| 8 |
+
class Unpickler(pickle.Unpickler):
|
| 9 |
+
def find_class(self, module, name):
|
| 10 |
+
#TODO: safe unpickle
|
| 11 |
+
if module.startswith("pytorch_lightning"):
|
| 12 |
+
return Empty
|
| 13 |
+
return super().find_class(module, name)
|
ComfyUI/comfy/cldm/__pycache__/cldm.cpython-310.pyc
ADDED
|
Binary file (11.5 kB). View file
|
|
|
ComfyUI/comfy/cldm/__pycache__/control_types.cpython-310.pyc
ADDED
|
Binary file (370 Bytes). View file
|
|
|
ComfyUI/comfy/cldm/__pycache__/mmdit.cpython-310.pyc
ADDED
|
Binary file (2.07 kB). View file
|
|
|
ComfyUI/comfy/cldm/cldm.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
| 2 |
+
#and modified
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch as th
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from ..ldm.modules.diffusionmodules.util import (
|
| 9 |
+
zero_module,
|
| 10 |
+
timestep_embedding,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from ..ldm.modules.attention import SpatialTransformer
|
| 14 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
| 15 |
+
from ..ldm.util import exists
|
| 16 |
+
from .control_types import UNION_CONTROLNET_TYPES
|
| 17 |
+
from collections import OrderedDict
|
| 18 |
+
import comfy.ops
|
| 19 |
+
from comfy.ldm.modules.attention import optimized_attention
|
| 20 |
+
|
| 21 |
+
class OptimizedAttention(nn.Module):
|
| 22 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.heads = nhead
|
| 25 |
+
self.c = c
|
| 26 |
+
|
| 27 |
+
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
| 28 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
x = self.in_proj(x)
|
| 32 |
+
q, k, v = x.split(self.c, dim=2)
|
| 33 |
+
out = optimized_attention(q, k, v, self.heads)
|
| 34 |
+
return self.out_proj(out)
|
| 35 |
+
|
| 36 |
+
class QuickGELU(nn.Module):
|
| 37 |
+
def forward(self, x: torch.Tensor):
|
| 38 |
+
return x * torch.sigmoid(1.702 * x)
|
| 39 |
+
|
| 40 |
+
class ResBlockUnionControlnet(nn.Module):
|
| 41 |
+
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
| 44 |
+
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 45 |
+
self.mlp = nn.Sequential(
|
| 46 |
+
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
| 47 |
+
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
| 48 |
+
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 49 |
+
|
| 50 |
+
def attention(self, x: torch.Tensor):
|
| 51 |
+
return self.attn(x)
|
| 52 |
+
|
| 53 |
+
def forward(self, x: torch.Tensor):
|
| 54 |
+
x = x + self.attention(self.ln_1(x))
|
| 55 |
+
x = x + self.mlp(self.ln_2(x))
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
class ControlledUnetModel(UNetModel):
|
| 59 |
+
#implemented in the ldm unet
|
| 60 |
+
pass
|
| 61 |
+
|
| 62 |
+
class ControlNet(nn.Module):
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
image_size,
|
| 66 |
+
in_channels,
|
| 67 |
+
model_channels,
|
| 68 |
+
hint_channels,
|
| 69 |
+
num_res_blocks,
|
| 70 |
+
dropout=0,
|
| 71 |
+
channel_mult=(1, 2, 4, 8),
|
| 72 |
+
conv_resample=True,
|
| 73 |
+
dims=2,
|
| 74 |
+
num_classes=None,
|
| 75 |
+
use_checkpoint=False,
|
| 76 |
+
dtype=torch.float32,
|
| 77 |
+
num_heads=-1,
|
| 78 |
+
num_head_channels=-1,
|
| 79 |
+
num_heads_upsample=-1,
|
| 80 |
+
use_scale_shift_norm=False,
|
| 81 |
+
resblock_updown=False,
|
| 82 |
+
use_new_attention_order=False,
|
| 83 |
+
use_spatial_transformer=False, # custom transformer support
|
| 84 |
+
transformer_depth=1, # custom transformer support
|
| 85 |
+
context_dim=None, # custom transformer support
|
| 86 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 87 |
+
legacy=True,
|
| 88 |
+
disable_self_attentions=None,
|
| 89 |
+
num_attention_blocks=None,
|
| 90 |
+
disable_middle_self_attn=False,
|
| 91 |
+
use_linear_in_transformer=False,
|
| 92 |
+
adm_in_channels=None,
|
| 93 |
+
transformer_depth_middle=None,
|
| 94 |
+
transformer_depth_output=None,
|
| 95 |
+
attn_precision=None,
|
| 96 |
+
union_controlnet_num_control_type=None,
|
| 97 |
+
device=None,
|
| 98 |
+
operations=comfy.ops.disable_weight_init,
|
| 99 |
+
**kwargs,
|
| 100 |
+
):
|
| 101 |
+
super().__init__()
|
| 102 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
| 103 |
+
if use_spatial_transformer:
|
| 104 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 105 |
+
|
| 106 |
+
if context_dim is not None:
|
| 107 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 108 |
+
# from omegaconf.listconfig import ListConfig
|
| 109 |
+
# if type(context_dim) == ListConfig:
|
| 110 |
+
# context_dim = list(context_dim)
|
| 111 |
+
|
| 112 |
+
if num_heads_upsample == -1:
|
| 113 |
+
num_heads_upsample = num_heads
|
| 114 |
+
|
| 115 |
+
if num_heads == -1:
|
| 116 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 117 |
+
|
| 118 |
+
if num_head_channels == -1:
|
| 119 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 120 |
+
|
| 121 |
+
self.dims = dims
|
| 122 |
+
self.image_size = image_size
|
| 123 |
+
self.in_channels = in_channels
|
| 124 |
+
self.model_channels = model_channels
|
| 125 |
+
|
| 126 |
+
if isinstance(num_res_blocks, int):
|
| 127 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 128 |
+
else:
|
| 129 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 130 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 131 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 132 |
+
self.num_res_blocks = num_res_blocks
|
| 133 |
+
|
| 134 |
+
if disable_self_attentions is not None:
|
| 135 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 136 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 137 |
+
if num_attention_blocks is not None:
|
| 138 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 139 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 140 |
+
|
| 141 |
+
transformer_depth = transformer_depth[:]
|
| 142 |
+
|
| 143 |
+
self.dropout = dropout
|
| 144 |
+
self.channel_mult = channel_mult
|
| 145 |
+
self.conv_resample = conv_resample
|
| 146 |
+
self.num_classes = num_classes
|
| 147 |
+
self.use_checkpoint = use_checkpoint
|
| 148 |
+
self.dtype = dtype
|
| 149 |
+
self.num_heads = num_heads
|
| 150 |
+
self.num_head_channels = num_head_channels
|
| 151 |
+
self.num_heads_upsample = num_heads_upsample
|
| 152 |
+
self.predict_codebook_ids = n_embed is not None
|
| 153 |
+
|
| 154 |
+
time_embed_dim = model_channels * 4
|
| 155 |
+
self.time_embed = nn.Sequential(
|
| 156 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 157 |
+
nn.SiLU(),
|
| 158 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if self.num_classes is not None:
|
| 162 |
+
if isinstance(self.num_classes, int):
|
| 163 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 164 |
+
elif self.num_classes == "continuous":
|
| 165 |
+
print("setting up linear c_adm embedding layer")
|
| 166 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 167 |
+
elif self.num_classes == "sequential":
|
| 168 |
+
assert adm_in_channels is not None
|
| 169 |
+
self.label_emb = nn.Sequential(
|
| 170 |
+
nn.Sequential(
|
| 171 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 172 |
+
nn.SiLU(),
|
| 173 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 174 |
+
)
|
| 175 |
+
)
|
| 176 |
+
else:
|
| 177 |
+
raise ValueError()
|
| 178 |
+
|
| 179 |
+
self.input_blocks = nn.ModuleList(
|
| 180 |
+
[
|
| 181 |
+
TimestepEmbedSequential(
|
| 182 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 183 |
+
)
|
| 184 |
+
]
|
| 185 |
+
)
|
| 186 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
| 187 |
+
|
| 188 |
+
self.input_hint_block = TimestepEmbedSequential(
|
| 189 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 190 |
+
nn.SiLU(),
|
| 191 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 192 |
+
nn.SiLU(),
|
| 193 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 194 |
+
nn.SiLU(),
|
| 195 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
| 196 |
+
nn.SiLU(),
|
| 197 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 198 |
+
nn.SiLU(),
|
| 199 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
| 200 |
+
nn.SiLU(),
|
| 201 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 202 |
+
nn.SiLU(),
|
| 203 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
self._feature_size = model_channels
|
| 207 |
+
input_block_chans = [model_channels]
|
| 208 |
+
ch = model_channels
|
| 209 |
+
ds = 1
|
| 210 |
+
for level, mult in enumerate(channel_mult):
|
| 211 |
+
for nr in range(self.num_res_blocks[level]):
|
| 212 |
+
layers = [
|
| 213 |
+
ResBlock(
|
| 214 |
+
ch,
|
| 215 |
+
time_embed_dim,
|
| 216 |
+
dropout,
|
| 217 |
+
out_channels=mult * model_channels,
|
| 218 |
+
dims=dims,
|
| 219 |
+
use_checkpoint=use_checkpoint,
|
| 220 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 221 |
+
dtype=self.dtype,
|
| 222 |
+
device=device,
|
| 223 |
+
operations=operations,
|
| 224 |
+
)
|
| 225 |
+
]
|
| 226 |
+
ch = mult * model_channels
|
| 227 |
+
num_transformers = transformer_depth.pop(0)
|
| 228 |
+
if num_transformers > 0:
|
| 229 |
+
if num_head_channels == -1:
|
| 230 |
+
dim_head = ch // num_heads
|
| 231 |
+
else:
|
| 232 |
+
num_heads = ch // num_head_channels
|
| 233 |
+
dim_head = num_head_channels
|
| 234 |
+
if legacy:
|
| 235 |
+
#num_heads = 1
|
| 236 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 237 |
+
if exists(disable_self_attentions):
|
| 238 |
+
disabled_sa = disable_self_attentions[level]
|
| 239 |
+
else:
|
| 240 |
+
disabled_sa = False
|
| 241 |
+
|
| 242 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 243 |
+
layers.append(
|
| 244 |
+
SpatialTransformer(
|
| 245 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
| 246 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 247 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 248 |
+
)
|
| 249 |
+
)
|
| 250 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 251 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 252 |
+
self._feature_size += ch
|
| 253 |
+
input_block_chans.append(ch)
|
| 254 |
+
if level != len(channel_mult) - 1:
|
| 255 |
+
out_ch = ch
|
| 256 |
+
self.input_blocks.append(
|
| 257 |
+
TimestepEmbedSequential(
|
| 258 |
+
ResBlock(
|
| 259 |
+
ch,
|
| 260 |
+
time_embed_dim,
|
| 261 |
+
dropout,
|
| 262 |
+
out_channels=out_ch,
|
| 263 |
+
dims=dims,
|
| 264 |
+
use_checkpoint=use_checkpoint,
|
| 265 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 266 |
+
down=True,
|
| 267 |
+
dtype=self.dtype,
|
| 268 |
+
device=device,
|
| 269 |
+
operations=operations
|
| 270 |
+
)
|
| 271 |
+
if resblock_updown
|
| 272 |
+
else Downsample(
|
| 273 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
| 274 |
+
)
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
ch = out_ch
|
| 278 |
+
input_block_chans.append(ch)
|
| 279 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 280 |
+
ds *= 2
|
| 281 |
+
self._feature_size += ch
|
| 282 |
+
|
| 283 |
+
if num_head_channels == -1:
|
| 284 |
+
dim_head = ch // num_heads
|
| 285 |
+
else:
|
| 286 |
+
num_heads = ch // num_head_channels
|
| 287 |
+
dim_head = num_head_channels
|
| 288 |
+
if legacy:
|
| 289 |
+
#num_heads = 1
|
| 290 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 291 |
+
mid_block = [
|
| 292 |
+
ResBlock(
|
| 293 |
+
ch,
|
| 294 |
+
time_embed_dim,
|
| 295 |
+
dropout,
|
| 296 |
+
dims=dims,
|
| 297 |
+
use_checkpoint=use_checkpoint,
|
| 298 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 299 |
+
dtype=self.dtype,
|
| 300 |
+
device=device,
|
| 301 |
+
operations=operations
|
| 302 |
+
)]
|
| 303 |
+
if transformer_depth_middle >= 0:
|
| 304 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
| 305 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
| 306 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 307 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 308 |
+
),
|
| 309 |
+
ResBlock(
|
| 310 |
+
ch,
|
| 311 |
+
time_embed_dim,
|
| 312 |
+
dropout,
|
| 313 |
+
dims=dims,
|
| 314 |
+
use_checkpoint=use_checkpoint,
|
| 315 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 316 |
+
dtype=self.dtype,
|
| 317 |
+
device=device,
|
| 318 |
+
operations=operations
|
| 319 |
+
)]
|
| 320 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
| 321 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
| 322 |
+
self._feature_size += ch
|
| 323 |
+
|
| 324 |
+
if union_controlnet_num_control_type is not None:
|
| 325 |
+
self.num_control_type = union_controlnet_num_control_type
|
| 326 |
+
num_trans_channel = 320
|
| 327 |
+
num_trans_head = 8
|
| 328 |
+
num_trans_layer = 1
|
| 329 |
+
num_proj_channel = 320
|
| 330 |
+
# task_scale_factor = num_trans_channel ** 0.5
|
| 331 |
+
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
| 332 |
+
|
| 333 |
+
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
| 334 |
+
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
| 335 |
+
#-----------------------------------------------------------------------------------------------------
|
| 336 |
+
|
| 337 |
+
control_add_embed_dim = 256
|
| 338 |
+
class ControlAddEmbedding(nn.Module):
|
| 339 |
+
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
| 340 |
+
super().__init__()
|
| 341 |
+
self.num_control_type = num_control_type
|
| 342 |
+
self.in_dim = in_dim
|
| 343 |
+
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
| 344 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
| 345 |
+
def forward(self, control_type, dtype, device):
|
| 346 |
+
c_type = torch.zeros((self.num_control_type,), device=device)
|
| 347 |
+
c_type[control_type] = 1.0
|
| 348 |
+
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
| 349 |
+
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
| 350 |
+
|
| 351 |
+
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
| 352 |
+
else:
|
| 353 |
+
self.task_embedding = None
|
| 354 |
+
self.control_add_embedding = None
|
| 355 |
+
|
| 356 |
+
def union_controlnet_merge(self, hint, control_type, emb, context):
|
| 357 |
+
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
| 358 |
+
inputs = []
|
| 359 |
+
condition_list = []
|
| 360 |
+
|
| 361 |
+
for idx in range(min(1, len(control_type))):
|
| 362 |
+
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
| 363 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
| 364 |
+
if idx < len(control_type):
|
| 365 |
+
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
| 366 |
+
|
| 367 |
+
inputs.append(feat_seq.unsqueeze(1))
|
| 368 |
+
condition_list.append(controlnet_cond)
|
| 369 |
+
|
| 370 |
+
x = torch.cat(inputs, dim=1)
|
| 371 |
+
x = self.transformer_layes(x)
|
| 372 |
+
controlnet_cond_fuser = None
|
| 373 |
+
for idx in range(len(control_type)):
|
| 374 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
| 375 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
| 376 |
+
o = condition_list[idx] + alpha
|
| 377 |
+
if controlnet_cond_fuser is None:
|
| 378 |
+
controlnet_cond_fuser = o
|
| 379 |
+
else:
|
| 380 |
+
controlnet_cond_fuser += o
|
| 381 |
+
return controlnet_cond_fuser
|
| 382 |
+
|
| 383 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
| 384 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
| 385 |
+
|
| 386 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
| 387 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 388 |
+
emb = self.time_embed(t_emb)
|
| 389 |
+
|
| 390 |
+
guided_hint = None
|
| 391 |
+
if self.control_add_embedding is not None: #Union Controlnet
|
| 392 |
+
control_type = kwargs.get("control_type", [])
|
| 393 |
+
|
| 394 |
+
if any([c >= self.num_control_type for c in control_type]):
|
| 395 |
+
max_type = max(control_type)
|
| 396 |
+
max_type_name = {
|
| 397 |
+
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
| 398 |
+
}[max_type]
|
| 399 |
+
raise ValueError(
|
| 400 |
+
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
| 401 |
+
f"({self.num_control_type}) supported.\n" +
|
| 402 |
+
"Please consider using the ProMax ControlNet Union model.\n" +
|
| 403 |
+
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
| 407 |
+
if len(control_type) > 0:
|
| 408 |
+
if len(hint.shape) < 5:
|
| 409 |
+
hint = hint.unsqueeze(dim=0)
|
| 410 |
+
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
| 411 |
+
|
| 412 |
+
if guided_hint is None:
|
| 413 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
| 414 |
+
|
| 415 |
+
out_output = []
|
| 416 |
+
out_middle = []
|
| 417 |
+
|
| 418 |
+
hs = []
|
| 419 |
+
if self.num_classes is not None:
|
| 420 |
+
assert y.shape[0] == x.shape[0]
|
| 421 |
+
emb = emb + self.label_emb(y)
|
| 422 |
+
|
| 423 |
+
h = x
|
| 424 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
| 425 |
+
if guided_hint is not None:
|
| 426 |
+
h = module(h, emb, context)
|
| 427 |
+
h += guided_hint
|
| 428 |
+
guided_hint = None
|
| 429 |
+
else:
|
| 430 |
+
h = module(h, emb, context)
|
| 431 |
+
out_output.append(zero_conv(h, emb, context))
|
| 432 |
+
|
| 433 |
+
h = self.middle_block(h, emb, context)
|
| 434 |
+
out_middle.append(self.middle_block_out(h, emb, context))
|
| 435 |
+
|
| 436 |
+
return {"middle": out_middle, "output": out_output}
|
| 437 |
+
|
ComfyUI/comfy/cldm/control_types.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
UNION_CONTROLNET_TYPES = {
|
| 2 |
+
"openpose": 0,
|
| 3 |
+
"depth": 1,
|
| 4 |
+
"hed/pidi/scribble/ted": 2,
|
| 5 |
+
"canny/lineart/anime_lineart/mlsd": 3,
|
| 6 |
+
"normal": 4,
|
| 7 |
+
"segment": 5,
|
| 8 |
+
"tile": 6,
|
| 9 |
+
"repaint": 7,
|
| 10 |
+
}
|
ComfyUI/comfy/cldm/mmdit.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Dict, Optional
|
| 3 |
+
import comfy.ldm.modules.diffusionmodules.mmdit
|
| 4 |
+
|
| 5 |
+
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
num_blocks = None,
|
| 9 |
+
dtype = None,
|
| 10 |
+
device = None,
|
| 11 |
+
operations = None,
|
| 12 |
+
**kwargs,
|
| 13 |
+
):
|
| 14 |
+
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
| 15 |
+
# controlnet_blocks
|
| 16 |
+
self.controlnet_blocks = torch.nn.ModuleList([])
|
| 17 |
+
for _ in range(len(self.joint_blocks)):
|
| 18 |
+
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
| 19 |
+
|
| 20 |
+
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
| 21 |
+
None,
|
| 22 |
+
self.patch_size,
|
| 23 |
+
self.in_channels,
|
| 24 |
+
self.hidden_size,
|
| 25 |
+
bias=True,
|
| 26 |
+
strict_img_size=False,
|
| 27 |
+
dtype=dtype,
|
| 28 |
+
device=device,
|
| 29 |
+
operations=operations
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def forward(
|
| 33 |
+
self,
|
| 34 |
+
x: torch.Tensor,
|
| 35 |
+
timesteps: torch.Tensor,
|
| 36 |
+
y: Optional[torch.Tensor] = None,
|
| 37 |
+
context: Optional[torch.Tensor] = None,
|
| 38 |
+
hint = None,
|
| 39 |
+
) -> torch.Tensor:
|
| 40 |
+
|
| 41 |
+
#weird sd3 controlnet specific stuff
|
| 42 |
+
y = torch.zeros_like(y)
|
| 43 |
+
|
| 44 |
+
if self.context_processor is not None:
|
| 45 |
+
context = self.context_processor(context)
|
| 46 |
+
|
| 47 |
+
hw = x.shape[-2:]
|
| 48 |
+
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
| 49 |
+
x += self.pos_embed_input(hint)
|
| 50 |
+
|
| 51 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
| 52 |
+
if y is not None and self.y_embedder is not None:
|
| 53 |
+
y = self.y_embedder(y)
|
| 54 |
+
c = c + y
|
| 55 |
+
|
| 56 |
+
if context is not None:
|
| 57 |
+
context = self.context_embedder(context)
|
| 58 |
+
|
| 59 |
+
output = []
|
| 60 |
+
|
| 61 |
+
blocks = len(self.joint_blocks)
|
| 62 |
+
for i in range(blocks):
|
| 63 |
+
context, x = self.joint_blocks[i](
|
| 64 |
+
context,
|
| 65 |
+
x,
|
| 66 |
+
c=c,
|
| 67 |
+
use_checkpoint=self.use_checkpoint,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
out = self.controlnet_blocks[i](x)
|
| 71 |
+
count = self.depth // blocks
|
| 72 |
+
if i == blocks - 1:
|
| 73 |
+
count -= 1
|
| 74 |
+
for j in range(count):
|
| 75 |
+
output.append(out)
|
| 76 |
+
|
| 77 |
+
return {"output": output}
|
ComfyUI/comfy/cli_args.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import enum
|
| 3 |
+
import os
|
| 4 |
+
from typing import Optional
|
| 5 |
+
import comfy.options
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class EnumAction(argparse.Action):
|
| 9 |
+
"""
|
| 10 |
+
Argparse action for handling Enums
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, **kwargs):
|
| 13 |
+
# Pop off the type value
|
| 14 |
+
enum_type = kwargs.pop("type", None)
|
| 15 |
+
|
| 16 |
+
# Ensure an Enum subclass is provided
|
| 17 |
+
if enum_type is None:
|
| 18 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
| 19 |
+
if not issubclass(enum_type, enum.Enum):
|
| 20 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
| 21 |
+
|
| 22 |
+
# Generate choices from the Enum
|
| 23 |
+
choices = tuple(e.value for e in enum_type)
|
| 24 |
+
kwargs.setdefault("choices", choices)
|
| 25 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
| 26 |
+
|
| 27 |
+
super(EnumAction, self).__init__(**kwargs)
|
| 28 |
+
|
| 29 |
+
self._enum = enum_type
|
| 30 |
+
|
| 31 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
| 32 |
+
# Convert value back into an Enum
|
| 33 |
+
value = self._enum(values)
|
| 34 |
+
setattr(namespace, self.dest, value)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
parser = argparse.ArgumentParser()
|
| 38 |
+
|
| 39 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
| 40 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
| 41 |
+
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
| 42 |
+
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
| 43 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
| 44 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
| 45 |
+
|
| 46 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
| 47 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
| 48 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
| 49 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
| 50 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
| 51 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
| 52 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
| 53 |
+
cm_group = parser.add_mutually_exclusive_group()
|
| 54 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
| 55 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
fp_group = parser.add_mutually_exclusive_group()
|
| 59 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
| 60 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
| 61 |
+
|
| 62 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
| 63 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
|
| 64 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
| 65 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
| 66 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
| 67 |
+
|
| 68 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
| 69 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
| 70 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
| 71 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
| 72 |
+
|
| 73 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
| 74 |
+
|
| 75 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
| 76 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
| 77 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
| 78 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
| 79 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
| 80 |
+
|
| 81 |
+
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
| 82 |
+
|
| 83 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
| 84 |
+
|
| 85 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
| 86 |
+
|
| 87 |
+
class LatentPreviewMethod(enum.Enum):
|
| 88 |
+
NoPreviews = "none"
|
| 89 |
+
Auto = "auto"
|
| 90 |
+
Latent2RGB = "latent2rgb"
|
| 91 |
+
TAESD = "taesd"
|
| 92 |
+
|
| 93 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
| 94 |
+
|
| 95 |
+
attn_group = parser.add_mutually_exclusive_group()
|
| 96 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
| 97 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
| 98 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
| 99 |
+
|
| 100 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
| 101 |
+
|
| 102 |
+
upcast = parser.add_mutually_exclusive_group()
|
| 103 |
+
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
| 104 |
+
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
vram_group = parser.add_mutually_exclusive_group()
|
| 108 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
| 109 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
| 110 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
| 111 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
| 112 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
| 113 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
| 114 |
+
|
| 115 |
+
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
| 116 |
+
|
| 117 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
| 118 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
| 119 |
+
|
| 120 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
| 121 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
| 122 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
| 123 |
+
|
| 124 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
| 125 |
+
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
| 126 |
+
|
| 127 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
| 128 |
+
|
| 129 |
+
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
|
| 130 |
+
|
| 131 |
+
# The default built-in provider hosted under web/
|
| 132 |
+
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
| 133 |
+
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--front-end-version",
|
| 136 |
+
type=str,
|
| 137 |
+
default=DEFAULT_VERSION_STRING,
|
| 138 |
+
help="""
|
| 139 |
+
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
| 140 |
+
download available frontend implementations from GitHub releases.
|
| 141 |
+
|
| 142 |
+
The version string should be in the format of:
|
| 143 |
+
[repoOwner]/[repoName]@[version]
|
| 144 |
+
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
| 145 |
+
""",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
| 149 |
+
"""Validate if the given path is a directory."""
|
| 150 |
+
if path is None:
|
| 151 |
+
return None
|
| 152 |
+
|
| 153 |
+
if not os.path.isdir(path):
|
| 154 |
+
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
| 155 |
+
return path
|
| 156 |
+
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--front-end-root",
|
| 159 |
+
type=is_valid_directory,
|
| 160 |
+
default=None,
|
| 161 |
+
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
if comfy.options.args_parsing:
|
| 165 |
+
args = parser.parse_args()
|
| 166 |
+
else:
|
| 167 |
+
args = parser.parse_args([])
|
| 168 |
+
|
| 169 |
+
if args.windows_standalone_build:
|
| 170 |
+
args.auto_launch = True
|
| 171 |
+
|
| 172 |
+
if args.disable_auto_launch:
|
| 173 |
+
args.auto_launch = False
|
| 174 |
+
|
| 175 |
+
import logging
|
| 176 |
+
logging_level = logging.INFO
|
| 177 |
+
if args.verbose:
|
| 178 |
+
logging_level = logging.DEBUG
|
| 179 |
+
|
| 180 |
+
logging.basicConfig(format="%(message)s", level=logging_level)
|
ComfyUI/comfy/clip_config_bigg.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPTextModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"dropout": 0.0,
|
| 8 |
+
"eos_token_id": 49407,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_size": 1280,
|
| 11 |
+
"initializer_factor": 1.0,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 5120,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 77,
|
| 16 |
+
"model_type": "clip_text_model",
|
| 17 |
+
"num_attention_heads": 20,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"projection_dim": 1280,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"vocab_size": 49408
|
| 23 |
+
}
|
ComfyUI/comfy/clip_model.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
| 3 |
+
import comfy.ops
|
| 4 |
+
|
| 5 |
+
class CLIPAttention(torch.nn.Module):
|
| 6 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
| 7 |
+
super().__init__()
|
| 8 |
+
|
| 9 |
+
self.heads = heads
|
| 10 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 11 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 12 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 13 |
+
|
| 14 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 15 |
+
|
| 16 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
| 17 |
+
q = self.q_proj(x)
|
| 18 |
+
k = self.k_proj(x)
|
| 19 |
+
v = self.v_proj(x)
|
| 20 |
+
|
| 21 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
| 22 |
+
return self.out_proj(out)
|
| 23 |
+
|
| 24 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
| 25 |
+
"gelu": torch.nn.functional.gelu,
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
class CLIPMLP(torch.nn.Module):
|
| 29 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
| 32 |
+
self.activation = ACTIVATIONS[activation]
|
| 33 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
x = self.fc1(x)
|
| 37 |
+
x = self.activation(x)
|
| 38 |
+
x = self.fc2(x)
|
| 39 |
+
return x
|
| 40 |
+
|
| 41 |
+
class CLIPLayer(torch.nn.Module):
|
| 42 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 45 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
| 46 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 47 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 48 |
+
|
| 49 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
| 50 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
| 51 |
+
x += self.mlp(self.layer_norm2(x))
|
| 52 |
+
return x
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class CLIPEncoder(torch.nn.Module):
|
| 56 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
| 57 |
+
super().__init__()
|
| 58 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
| 59 |
+
|
| 60 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
| 61 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
| 62 |
+
|
| 63 |
+
if intermediate_output is not None:
|
| 64 |
+
if intermediate_output < 0:
|
| 65 |
+
intermediate_output = len(self.layers) + intermediate_output
|
| 66 |
+
|
| 67 |
+
intermediate = None
|
| 68 |
+
for i, l in enumerate(self.layers):
|
| 69 |
+
x = l(x, mask, optimized_attention)
|
| 70 |
+
if i == intermediate_output:
|
| 71 |
+
intermediate = x.clone()
|
| 72 |
+
return x, intermediate
|
| 73 |
+
|
| 74 |
+
class CLIPEmbeddings(torch.nn.Module):
|
| 75 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
| 78 |
+
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
| 79 |
+
|
| 80 |
+
def forward(self, input_tokens, dtype=torch.float32):
|
| 81 |
+
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class CLIPTextModel_(torch.nn.Module):
|
| 85 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 86 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 87 |
+
embed_dim = config_dict["hidden_size"]
|
| 88 |
+
heads = config_dict["num_attention_heads"]
|
| 89 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 90 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 91 |
+
self.eos_token_id = config_dict["eos_token_id"]
|
| 92 |
+
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.embeddings = CLIPEmbeddings(embed_dim, dtype=dtype, device=device, operations=operations)
|
| 95 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 96 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 97 |
+
|
| 98 |
+
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
| 99 |
+
x = self.embeddings(input_tokens, dtype=dtype)
|
| 100 |
+
mask = None
|
| 101 |
+
if attention_mask is not None:
|
| 102 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
| 103 |
+
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
| 104 |
+
|
| 105 |
+
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
| 106 |
+
if mask is not None:
|
| 107 |
+
mask += causal_mask
|
| 108 |
+
else:
|
| 109 |
+
mask = causal_mask
|
| 110 |
+
|
| 111 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
| 112 |
+
x = self.final_layer_norm(x)
|
| 113 |
+
if i is not None and final_layer_norm_intermediate:
|
| 114 |
+
i = self.final_layer_norm(i)
|
| 115 |
+
|
| 116 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
| 117 |
+
return x, i, pooled_output
|
| 118 |
+
|
| 119 |
+
class CLIPTextModel(torch.nn.Module):
|
| 120 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 121 |
+
super().__init__()
|
| 122 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
| 123 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
| 124 |
+
embed_dim = config_dict["hidden_size"]
|
| 125 |
+
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
| 126 |
+
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
| 127 |
+
self.dtype = dtype
|
| 128 |
+
|
| 129 |
+
def get_input_embeddings(self):
|
| 130 |
+
return self.text_model.embeddings.token_embedding
|
| 131 |
+
|
| 132 |
+
def set_input_embeddings(self, embeddings):
|
| 133 |
+
self.text_model.embeddings.token_embedding = embeddings
|
| 134 |
+
|
| 135 |
+
def forward(self, *args, **kwargs):
|
| 136 |
+
x = self.text_model(*args, **kwargs)
|
| 137 |
+
out = self.text_projection(x[2])
|
| 138 |
+
return (x[0], x[1], out, x[2])
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
| 142 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
| 145 |
+
|
| 146 |
+
self.patch_embedding = operations.Conv2d(
|
| 147 |
+
in_channels=num_channels,
|
| 148 |
+
out_channels=embed_dim,
|
| 149 |
+
kernel_size=patch_size,
|
| 150 |
+
stride=patch_size,
|
| 151 |
+
bias=False,
|
| 152 |
+
dtype=dtype,
|
| 153 |
+
device=device
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
num_patches = (image_size // patch_size) ** 2
|
| 157 |
+
num_positions = num_patches + 1
|
| 158 |
+
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
| 159 |
+
|
| 160 |
+
def forward(self, pixel_values):
|
| 161 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
| 162 |
+
return torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class CLIPVision(torch.nn.Module):
|
| 166 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 167 |
+
super().__init__()
|
| 168 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 169 |
+
embed_dim = config_dict["hidden_size"]
|
| 170 |
+
heads = config_dict["num_attention_heads"]
|
| 171 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 172 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 173 |
+
|
| 174 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=dtype, device=device, operations=operations)
|
| 175 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
| 176 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 177 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
| 178 |
+
|
| 179 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
| 180 |
+
x = self.embeddings(pixel_values)
|
| 181 |
+
x = self.pre_layrnorm(x)
|
| 182 |
+
#TODO: attention_mask?
|
| 183 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
| 184 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
| 185 |
+
return x, i, pooled_output
|
| 186 |
+
|
| 187 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
| 188 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
| 191 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
| 192 |
+
|
| 193 |
+
def forward(self, *args, **kwargs):
|
| 194 |
+
x = self.vision_model(*args, **kwargs)
|
| 195 |
+
out = self.visual_projection(x[2])
|
| 196 |
+
return (x[0], x[1], out)
|
ComfyUI/comfy/clip_vision.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
import comfy.ops
|
| 8 |
+
import comfy.model_patcher
|
| 9 |
+
import comfy.model_management
|
| 10 |
+
import comfy.utils
|
| 11 |
+
import comfy.clip_model
|
| 12 |
+
|
| 13 |
+
class Output:
|
| 14 |
+
def __getitem__(self, key):
|
| 15 |
+
return getattr(self, key)
|
| 16 |
+
def __setitem__(self, key, item):
|
| 17 |
+
setattr(self, key, item)
|
| 18 |
+
|
| 19 |
+
def clip_preprocess(image, size=224):
|
| 20 |
+
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
|
| 21 |
+
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
|
| 22 |
+
image = image.movedim(-1, 1)
|
| 23 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
| 24 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
| 25 |
+
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
| 26 |
+
h = (image.shape[2] - size)//2
|
| 27 |
+
w = (image.shape[3] - size)//2
|
| 28 |
+
image = image[:,:,h:h+size,w:w+size]
|
| 29 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
| 30 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
| 31 |
+
|
| 32 |
+
class ClipVisionModel():
|
| 33 |
+
def __init__(self, json_config):
|
| 34 |
+
with open(json_config) as f:
|
| 35 |
+
config = json.load(f)
|
| 36 |
+
|
| 37 |
+
self.image_size = config.get("image_size", 224)
|
| 38 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
| 39 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
| 40 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
| 41 |
+
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
| 42 |
+
self.model.eval()
|
| 43 |
+
|
| 44 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
| 45 |
+
|
| 46 |
+
def load_sd(self, sd):
|
| 47 |
+
return self.model.load_state_dict(sd, strict=False)
|
| 48 |
+
|
| 49 |
+
def get_sd(self):
|
| 50 |
+
return self.model.state_dict()
|
| 51 |
+
|
| 52 |
+
def encode_image(self, image):
|
| 53 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
| 54 |
+
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size).float()
|
| 55 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
| 56 |
+
|
| 57 |
+
outputs = Output()
|
| 58 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
| 59 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
| 60 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
| 61 |
+
return outputs
|
| 62 |
+
|
| 63 |
+
def convert_to_transformers(sd, prefix):
|
| 64 |
+
sd_k = sd.keys()
|
| 65 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
| 66 |
+
keys_to_replace = {
|
| 67 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
| 68 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
| 69 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
| 70 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
| 71 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
| 72 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
| 73 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
for x in keys_to_replace:
|
| 77 |
+
if x in sd_k:
|
| 78 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
| 79 |
+
|
| 80 |
+
if "{}proj".format(prefix) in sd_k:
|
| 81 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
| 82 |
+
|
| 83 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
| 84 |
+
else:
|
| 85 |
+
replace_prefix = {prefix: ""}
|
| 86 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
| 87 |
+
return sd
|
| 88 |
+
|
| 89 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
| 90 |
+
if convert_keys:
|
| 91 |
+
sd = convert_to_transformers(sd, prefix)
|
| 92 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
| 93 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
| 94 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
| 95 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
| 96 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
| 97 |
+
if sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
| 98 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
| 99 |
+
else:
|
| 100 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
| 101 |
+
else:
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
clip = ClipVisionModel(json_config)
|
| 105 |
+
m, u = clip.load_sd(sd)
|
| 106 |
+
if len(m) > 0:
|
| 107 |
+
logging.warning("missing clip vision: {}".format(m))
|
| 108 |
+
u = set(u)
|
| 109 |
+
keys = list(sd.keys())
|
| 110 |
+
for k in keys:
|
| 111 |
+
if k not in u:
|
| 112 |
+
t = sd.pop(k)
|
| 113 |
+
del t
|
| 114 |
+
return clip
|
| 115 |
+
|
| 116 |
+
def load(ckpt_path):
|
| 117 |
+
sd = load_torch_file(ckpt_path)
|
| 118 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
| 119 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
| 120 |
+
else:
|
| 121 |
+
return load_clipvision_from_sd(sd)
|
ComfyUI/comfy/clip_vision_config_g.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "gelu",
|
| 5 |
+
"hidden_size": 1664,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 8192,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 48,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 1280,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
ComfyUI/comfy/clip_vision_config_h.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "gelu",
|
| 5 |
+
"hidden_size": 1280,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 5120,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 32,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 1024,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
ComfyUI/comfy/clip_vision_config_vitl.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "quick_gelu",
|
| 5 |
+
"hidden_size": 1024,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 4096,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 24,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 768,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
ComfyUI/comfy/clip_vision_config_vitl_336.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "quick_gelu",
|
| 5 |
+
"hidden_size": 1024,
|
| 6 |
+
"image_size": 336,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 4096,
|
| 10 |
+
"layer_norm_eps": 1e-5,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 24,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 768,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
ComfyUI/comfy/conds.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import comfy.utils
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
| 7 |
+
return abs(a*b) // math.gcd(a, b)
|
| 8 |
+
|
| 9 |
+
class CONDRegular:
|
| 10 |
+
def __init__(self, cond):
|
| 11 |
+
self.cond = cond
|
| 12 |
+
|
| 13 |
+
def _copy_with(self, cond):
|
| 14 |
+
return self.__class__(cond)
|
| 15 |
+
|
| 16 |
+
def process_cond(self, batch_size, device, **kwargs):
|
| 17 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
| 18 |
+
|
| 19 |
+
def can_concat(self, other):
|
| 20 |
+
if self.cond.shape != other.cond.shape:
|
| 21 |
+
return False
|
| 22 |
+
return True
|
| 23 |
+
|
| 24 |
+
def concat(self, others):
|
| 25 |
+
conds = [self.cond]
|
| 26 |
+
for x in others:
|
| 27 |
+
conds.append(x.cond)
|
| 28 |
+
return torch.cat(conds)
|
| 29 |
+
|
| 30 |
+
class CONDNoiseShape(CONDRegular):
|
| 31 |
+
def process_cond(self, batch_size, device, area, **kwargs):
|
| 32 |
+
data = self.cond
|
| 33 |
+
if area is not None:
|
| 34 |
+
dims = len(area) // 2
|
| 35 |
+
for i in range(dims):
|
| 36 |
+
data = data.narrow(i + 2, area[i + dims], area[i])
|
| 37 |
+
|
| 38 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class CONDCrossAttn(CONDRegular):
|
| 42 |
+
def can_concat(self, other):
|
| 43 |
+
s1 = self.cond.shape
|
| 44 |
+
s2 = other.cond.shape
|
| 45 |
+
if s1 != s2:
|
| 46 |
+
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
mult_min = lcm(s1[1], s2[1])
|
| 50 |
+
diff = mult_min // min(s1[1], s2[1])
|
| 51 |
+
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
| 52 |
+
return False
|
| 53 |
+
return True
|
| 54 |
+
|
| 55 |
+
def concat(self, others):
|
| 56 |
+
conds = [self.cond]
|
| 57 |
+
crossattn_max_len = self.cond.shape[1]
|
| 58 |
+
for x in others:
|
| 59 |
+
c = x.cond
|
| 60 |
+
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
| 61 |
+
conds.append(c)
|
| 62 |
+
|
| 63 |
+
out = []
|
| 64 |
+
for c in conds:
|
| 65 |
+
if c.shape[1] < crossattn_max_len:
|
| 66 |
+
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
| 67 |
+
out.append(c)
|
| 68 |
+
return torch.cat(out)
|
| 69 |
+
|
| 70 |
+
class CONDConstant(CONDRegular):
|
| 71 |
+
def __init__(self, cond):
|
| 72 |
+
self.cond = cond
|
| 73 |
+
|
| 74 |
+
def process_cond(self, batch_size, device, **kwargs):
|
| 75 |
+
return self._copy_with(self.cond)
|
| 76 |
+
|
| 77 |
+
def can_concat(self, other):
|
| 78 |
+
if self.cond != other.cond:
|
| 79 |
+
return False
|
| 80 |
+
return True
|
| 81 |
+
|
| 82 |
+
def concat(self, others):
|
| 83 |
+
return self.cond
|
ComfyUI/comfy/controlnet.py
ADDED
|
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import os
|
| 4 |
+
import logging
|
| 5 |
+
import comfy.utils
|
| 6 |
+
import comfy.model_management
|
| 7 |
+
import comfy.model_detection
|
| 8 |
+
import comfy.model_patcher
|
| 9 |
+
import comfy.ops
|
| 10 |
+
import comfy.latent_formats
|
| 11 |
+
|
| 12 |
+
import comfy.cldm.cldm
|
| 13 |
+
import comfy.t2i_adapter.adapter
|
| 14 |
+
import comfy.ldm.cascade.controlnet
|
| 15 |
+
import comfy.cldm.mmdit
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
| 19 |
+
current_batch_size = tensor.shape[0]
|
| 20 |
+
#print(current_batch_size, target_batch_size)
|
| 21 |
+
if current_batch_size == 1:
|
| 22 |
+
return tensor
|
| 23 |
+
|
| 24 |
+
per_batch = target_batch_size // batched_number
|
| 25 |
+
tensor = tensor[:per_batch]
|
| 26 |
+
|
| 27 |
+
if per_batch > tensor.shape[0]:
|
| 28 |
+
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
| 29 |
+
|
| 30 |
+
current_batch_size = tensor.shape[0]
|
| 31 |
+
if current_batch_size == target_batch_size:
|
| 32 |
+
return tensor
|
| 33 |
+
else:
|
| 34 |
+
return torch.cat([tensor] * batched_number, dim=0)
|
| 35 |
+
|
| 36 |
+
class ControlBase:
|
| 37 |
+
def __init__(self, device=None):
|
| 38 |
+
self.cond_hint_original = None
|
| 39 |
+
self.cond_hint = None
|
| 40 |
+
self.strength = 1.0
|
| 41 |
+
self.timestep_percent_range = (0.0, 1.0)
|
| 42 |
+
self.latent_format = None
|
| 43 |
+
self.vae = None
|
| 44 |
+
self.global_average_pooling = False
|
| 45 |
+
self.timestep_range = None
|
| 46 |
+
self.compression_ratio = 8
|
| 47 |
+
self.upscale_algorithm = 'nearest-exact'
|
| 48 |
+
self.extra_args = {}
|
| 49 |
+
|
| 50 |
+
if device is None:
|
| 51 |
+
device = comfy.model_management.get_torch_device()
|
| 52 |
+
self.device = device
|
| 53 |
+
self.previous_controlnet = None
|
| 54 |
+
|
| 55 |
+
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None):
|
| 56 |
+
self.cond_hint_original = cond_hint
|
| 57 |
+
self.strength = strength
|
| 58 |
+
self.timestep_percent_range = timestep_percent_range
|
| 59 |
+
if self.latent_format is not None:
|
| 60 |
+
self.vae = vae
|
| 61 |
+
return self
|
| 62 |
+
|
| 63 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 64 |
+
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
| 65 |
+
if self.previous_controlnet is not None:
|
| 66 |
+
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
| 67 |
+
|
| 68 |
+
def set_previous_controlnet(self, controlnet):
|
| 69 |
+
self.previous_controlnet = controlnet
|
| 70 |
+
return self
|
| 71 |
+
|
| 72 |
+
def cleanup(self):
|
| 73 |
+
if self.previous_controlnet is not None:
|
| 74 |
+
self.previous_controlnet.cleanup()
|
| 75 |
+
if self.cond_hint is not None:
|
| 76 |
+
del self.cond_hint
|
| 77 |
+
self.cond_hint = None
|
| 78 |
+
self.timestep_range = None
|
| 79 |
+
|
| 80 |
+
def get_models(self):
|
| 81 |
+
out = []
|
| 82 |
+
if self.previous_controlnet is not None:
|
| 83 |
+
out += self.previous_controlnet.get_models()
|
| 84 |
+
return out
|
| 85 |
+
|
| 86 |
+
def copy_to(self, c):
|
| 87 |
+
c.cond_hint_original = self.cond_hint_original
|
| 88 |
+
c.strength = self.strength
|
| 89 |
+
c.timestep_percent_range = self.timestep_percent_range
|
| 90 |
+
c.global_average_pooling = self.global_average_pooling
|
| 91 |
+
c.compression_ratio = self.compression_ratio
|
| 92 |
+
c.upscale_algorithm = self.upscale_algorithm
|
| 93 |
+
c.latent_format = self.latent_format
|
| 94 |
+
c.extra_args = self.extra_args.copy()
|
| 95 |
+
c.vae = self.vae
|
| 96 |
+
|
| 97 |
+
def inference_memory_requirements(self, dtype):
|
| 98 |
+
if self.previous_controlnet is not None:
|
| 99 |
+
return self.previous_controlnet.inference_memory_requirements(dtype)
|
| 100 |
+
return 0
|
| 101 |
+
|
| 102 |
+
def control_merge(self, control, control_prev, output_dtype):
|
| 103 |
+
out = {'input':[], 'middle':[], 'output': []}
|
| 104 |
+
|
| 105 |
+
for key in control:
|
| 106 |
+
control_output = control[key]
|
| 107 |
+
applied_to = set()
|
| 108 |
+
for i in range(len(control_output)):
|
| 109 |
+
x = control_output[i]
|
| 110 |
+
if x is not None:
|
| 111 |
+
if self.global_average_pooling:
|
| 112 |
+
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
| 113 |
+
|
| 114 |
+
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
|
| 115 |
+
applied_to.add(x)
|
| 116 |
+
x *= self.strength
|
| 117 |
+
|
| 118 |
+
if x.dtype != output_dtype:
|
| 119 |
+
x = x.to(output_dtype)
|
| 120 |
+
|
| 121 |
+
out[key].append(x)
|
| 122 |
+
|
| 123 |
+
if control_prev is not None:
|
| 124 |
+
for x in ['input', 'middle', 'output']:
|
| 125 |
+
o = out[x]
|
| 126 |
+
for i in range(len(control_prev[x])):
|
| 127 |
+
prev_val = control_prev[x][i]
|
| 128 |
+
if i >= len(o):
|
| 129 |
+
o.append(prev_val)
|
| 130 |
+
elif prev_val is not None:
|
| 131 |
+
if o[i] is None:
|
| 132 |
+
o[i] = prev_val
|
| 133 |
+
else:
|
| 134 |
+
if o[i].shape[0] < prev_val.shape[0]:
|
| 135 |
+
o[i] = prev_val + o[i]
|
| 136 |
+
else:
|
| 137 |
+
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
|
| 138 |
+
return out
|
| 139 |
+
|
| 140 |
+
def set_extra_arg(self, argument, value=None):
|
| 141 |
+
self.extra_args[argument] = value
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
class ControlNet(ControlBase):
|
| 145 |
+
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None):
|
| 146 |
+
super().__init__(device)
|
| 147 |
+
self.control_model = control_model
|
| 148 |
+
self.load_device = load_device
|
| 149 |
+
if control_model is not None:
|
| 150 |
+
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
| 151 |
+
|
| 152 |
+
self.compression_ratio = compression_ratio
|
| 153 |
+
self.global_average_pooling = global_average_pooling
|
| 154 |
+
self.model_sampling_current = None
|
| 155 |
+
self.manual_cast_dtype = manual_cast_dtype
|
| 156 |
+
self.latent_format = latent_format
|
| 157 |
+
|
| 158 |
+
def get_control(self, x_noisy, t, cond, batched_number):
|
| 159 |
+
control_prev = None
|
| 160 |
+
if self.previous_controlnet is not None:
|
| 161 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
| 162 |
+
|
| 163 |
+
if self.timestep_range is not None:
|
| 164 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
| 165 |
+
if control_prev is not None:
|
| 166 |
+
return control_prev
|
| 167 |
+
else:
|
| 168 |
+
return None
|
| 169 |
+
|
| 170 |
+
dtype = self.control_model.dtype
|
| 171 |
+
if self.manual_cast_dtype is not None:
|
| 172 |
+
dtype = self.manual_cast_dtype
|
| 173 |
+
|
| 174 |
+
output_dtype = x_noisy.dtype
|
| 175 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
| 176 |
+
if self.cond_hint is not None:
|
| 177 |
+
del self.cond_hint
|
| 178 |
+
self.cond_hint = None
|
| 179 |
+
compression_ratio = self.compression_ratio
|
| 180 |
+
if self.vae is not None:
|
| 181 |
+
compression_ratio *= self.vae.downscale_ratio
|
| 182 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
| 183 |
+
if self.vae is not None:
|
| 184 |
+
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
| 185 |
+
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
|
| 186 |
+
comfy.model_management.load_models_gpu(loaded_models)
|
| 187 |
+
if self.latent_format is not None:
|
| 188 |
+
self.cond_hint = self.latent_format.process_in(self.cond_hint)
|
| 189 |
+
self.cond_hint = self.cond_hint.to(device=self.device, dtype=dtype)
|
| 190 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
| 191 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
| 192 |
+
|
| 193 |
+
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
| 194 |
+
extra = self.extra_args.copy()
|
| 195 |
+
for c in ["y", "guidance"]: #TODO
|
| 196 |
+
temp = cond.get(c, None)
|
| 197 |
+
if temp is not None:
|
| 198 |
+
extra[c] = temp.to(dtype)
|
| 199 |
+
|
| 200 |
+
timestep = self.model_sampling_current.timestep(t)
|
| 201 |
+
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
| 202 |
+
|
| 203 |
+
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
| 204 |
+
return self.control_merge(control, control_prev, output_dtype)
|
| 205 |
+
|
| 206 |
+
def copy(self):
|
| 207 |
+
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
| 208 |
+
c.control_model = self.control_model
|
| 209 |
+
c.control_model_wrapped = self.control_model_wrapped
|
| 210 |
+
self.copy_to(c)
|
| 211 |
+
return c
|
| 212 |
+
|
| 213 |
+
def get_models(self):
|
| 214 |
+
out = super().get_models()
|
| 215 |
+
out.append(self.control_model_wrapped)
|
| 216 |
+
return out
|
| 217 |
+
|
| 218 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 219 |
+
super().pre_run(model, percent_to_timestep_function)
|
| 220 |
+
self.model_sampling_current = model.model_sampling
|
| 221 |
+
|
| 222 |
+
def cleanup(self):
|
| 223 |
+
self.model_sampling_current = None
|
| 224 |
+
super().cleanup()
|
| 225 |
+
|
| 226 |
+
class ControlLoraOps:
|
| 227 |
+
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
| 228 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
| 229 |
+
device=None, dtype=None) -> None:
|
| 230 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.in_features = in_features
|
| 233 |
+
self.out_features = out_features
|
| 234 |
+
self.weight = None
|
| 235 |
+
self.up = None
|
| 236 |
+
self.down = None
|
| 237 |
+
self.bias = None
|
| 238 |
+
|
| 239 |
+
def forward(self, input):
|
| 240 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
| 241 |
+
if self.up is not None:
|
| 242 |
+
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
| 243 |
+
else:
|
| 244 |
+
return torch.nn.functional.linear(input, weight, bias)
|
| 245 |
+
|
| 246 |
+
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
| 247 |
+
def __init__(
|
| 248 |
+
self,
|
| 249 |
+
in_channels,
|
| 250 |
+
out_channels,
|
| 251 |
+
kernel_size,
|
| 252 |
+
stride=1,
|
| 253 |
+
padding=0,
|
| 254 |
+
dilation=1,
|
| 255 |
+
groups=1,
|
| 256 |
+
bias=True,
|
| 257 |
+
padding_mode='zeros',
|
| 258 |
+
device=None,
|
| 259 |
+
dtype=None
|
| 260 |
+
):
|
| 261 |
+
super().__init__()
|
| 262 |
+
self.in_channels = in_channels
|
| 263 |
+
self.out_channels = out_channels
|
| 264 |
+
self.kernel_size = kernel_size
|
| 265 |
+
self.stride = stride
|
| 266 |
+
self.padding = padding
|
| 267 |
+
self.dilation = dilation
|
| 268 |
+
self.transposed = False
|
| 269 |
+
self.output_padding = 0
|
| 270 |
+
self.groups = groups
|
| 271 |
+
self.padding_mode = padding_mode
|
| 272 |
+
|
| 273 |
+
self.weight = None
|
| 274 |
+
self.bias = None
|
| 275 |
+
self.up = None
|
| 276 |
+
self.down = None
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def forward(self, input):
|
| 280 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
| 281 |
+
if self.up is not None:
|
| 282 |
+
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
| 283 |
+
else:
|
| 284 |
+
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
class ControlLora(ControlNet):
|
| 288 |
+
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
| 289 |
+
ControlBase.__init__(self, device)
|
| 290 |
+
self.control_weights = control_weights
|
| 291 |
+
self.global_average_pooling = global_average_pooling
|
| 292 |
+
|
| 293 |
+
def pre_run(self, model, percent_to_timestep_function):
|
| 294 |
+
super().pre_run(model, percent_to_timestep_function)
|
| 295 |
+
controlnet_config = model.model_config.unet_config.copy()
|
| 296 |
+
controlnet_config.pop("out_channels")
|
| 297 |
+
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
| 298 |
+
self.manual_cast_dtype = model.manual_cast_dtype
|
| 299 |
+
dtype = model.get_dtype()
|
| 300 |
+
if self.manual_cast_dtype is None:
|
| 301 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
|
| 302 |
+
pass
|
| 303 |
+
else:
|
| 304 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
|
| 305 |
+
pass
|
| 306 |
+
dtype = self.manual_cast_dtype
|
| 307 |
+
|
| 308 |
+
controlnet_config["operations"] = control_lora_ops
|
| 309 |
+
controlnet_config["dtype"] = dtype
|
| 310 |
+
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
| 311 |
+
self.control_model.to(comfy.model_management.get_torch_device())
|
| 312 |
+
diffusion_model = model.diffusion_model
|
| 313 |
+
sd = diffusion_model.state_dict()
|
| 314 |
+
cm = self.control_model.state_dict()
|
| 315 |
+
|
| 316 |
+
for k in sd:
|
| 317 |
+
weight = sd[k]
|
| 318 |
+
try:
|
| 319 |
+
comfy.utils.set_attr_param(self.control_model, k, weight)
|
| 320 |
+
except:
|
| 321 |
+
pass
|
| 322 |
+
|
| 323 |
+
for k in self.control_weights:
|
| 324 |
+
if k not in {"lora_controlnet"}:
|
| 325 |
+
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
| 326 |
+
|
| 327 |
+
def copy(self):
|
| 328 |
+
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
| 329 |
+
self.copy_to(c)
|
| 330 |
+
return c
|
| 331 |
+
|
| 332 |
+
def cleanup(self):
|
| 333 |
+
del self.control_model
|
| 334 |
+
self.control_model = None
|
| 335 |
+
super().cleanup()
|
| 336 |
+
|
| 337 |
+
def get_models(self):
|
| 338 |
+
out = ControlBase.get_models(self)
|
| 339 |
+
return out
|
| 340 |
+
|
| 341 |
+
def inference_memory_requirements(self, dtype):
|
| 342 |
+
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
| 343 |
+
|
| 344 |
+
def controlnet_config(sd):
|
| 345 |
+
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
|
| 346 |
+
|
| 347 |
+
supported_inference_dtypes = model_config.supported_inference_dtypes
|
| 348 |
+
|
| 349 |
+
controlnet_config = model_config.unet_config
|
| 350 |
+
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
| 351 |
+
load_device = comfy.model_management.get_torch_device()
|
| 352 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
| 353 |
+
if manual_cast_dtype is not None:
|
| 354 |
+
operations = comfy.ops.manual_cast
|
| 355 |
+
else:
|
| 356 |
+
operations = comfy.ops.disable_weight_init
|
| 357 |
+
|
| 358 |
+
return model_config, operations, load_device, unet_dtype, manual_cast_dtype
|
| 359 |
+
|
| 360 |
+
def controlnet_load_state_dict(control_model, sd):
|
| 361 |
+
missing, unexpected = control_model.load_state_dict(sd, strict=False)
|
| 362 |
+
|
| 363 |
+
if len(missing) > 0:
|
| 364 |
+
logging.warning("missing controlnet keys: {}".format(missing))
|
| 365 |
+
|
| 366 |
+
if len(unexpected) > 0:
|
| 367 |
+
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
| 368 |
+
return control_model
|
| 369 |
+
|
| 370 |
+
def load_controlnet_mmdit(sd):
|
| 371 |
+
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
| 372 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype = controlnet_config(new_sd)
|
| 373 |
+
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
| 374 |
+
for k in sd:
|
| 375 |
+
new_sd[k] = sd[k]
|
| 376 |
+
|
| 377 |
+
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, operations=operations, device=load_device, dtype=unet_dtype, **model_config.unet_config)
|
| 378 |
+
control_model = controlnet_load_state_dict(control_model, new_sd)
|
| 379 |
+
|
| 380 |
+
latent_format = comfy.latent_formats.SD3()
|
| 381 |
+
latent_format.shift_factor = 0 #SD3 controlnet weirdness
|
| 382 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
| 383 |
+
return control
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def load_controlnet(ckpt_path, model=None):
|
| 387 |
+
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
| 388 |
+
if "lora_controlnet" in controlnet_data:
|
| 389 |
+
return ControlLora(controlnet_data)
|
| 390 |
+
|
| 391 |
+
controlnet_config = None
|
| 392 |
+
supported_inference_dtypes = None
|
| 393 |
+
|
| 394 |
+
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
| 395 |
+
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
|
| 396 |
+
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
| 397 |
+
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
| 398 |
+
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
| 399 |
+
|
| 400 |
+
count = 0
|
| 401 |
+
loop = True
|
| 402 |
+
while loop:
|
| 403 |
+
suffix = [".weight", ".bias"]
|
| 404 |
+
for s in suffix:
|
| 405 |
+
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
| 406 |
+
k_out = "zero_convs.{}.0{}".format(count, s)
|
| 407 |
+
if k_in not in controlnet_data:
|
| 408 |
+
loop = False
|
| 409 |
+
break
|
| 410 |
+
diffusers_keys[k_in] = k_out
|
| 411 |
+
count += 1
|
| 412 |
+
|
| 413 |
+
count = 0
|
| 414 |
+
loop = True
|
| 415 |
+
while loop:
|
| 416 |
+
suffix = [".weight", ".bias"]
|
| 417 |
+
for s in suffix:
|
| 418 |
+
if count == 0:
|
| 419 |
+
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
| 420 |
+
else:
|
| 421 |
+
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
| 422 |
+
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
| 423 |
+
if k_in not in controlnet_data:
|
| 424 |
+
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
| 425 |
+
loop = False
|
| 426 |
+
diffusers_keys[k_in] = k_out
|
| 427 |
+
count += 1
|
| 428 |
+
|
| 429 |
+
new_sd = {}
|
| 430 |
+
for k in diffusers_keys:
|
| 431 |
+
if k in controlnet_data:
|
| 432 |
+
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
| 433 |
+
|
| 434 |
+
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
|
| 435 |
+
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
|
| 436 |
+
for k in list(controlnet_data.keys()):
|
| 437 |
+
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
|
| 438 |
+
new_sd[new_k] = controlnet_data.pop(k)
|
| 439 |
+
|
| 440 |
+
leftover_keys = controlnet_data.keys()
|
| 441 |
+
if len(leftover_keys) > 0:
|
| 442 |
+
logging.warning("leftover keys: {}".format(leftover_keys))
|
| 443 |
+
controlnet_data = new_sd
|
| 444 |
+
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
|
| 445 |
+
return load_controlnet_mmdit(controlnet_data)
|
| 446 |
+
|
| 447 |
+
pth_key = 'control_model.zero_convs.0.0.weight'
|
| 448 |
+
pth = False
|
| 449 |
+
key = 'zero_convs.0.0.weight'
|
| 450 |
+
if pth_key in controlnet_data:
|
| 451 |
+
pth = True
|
| 452 |
+
key = pth_key
|
| 453 |
+
prefix = "control_model."
|
| 454 |
+
elif key in controlnet_data:
|
| 455 |
+
prefix = ""
|
| 456 |
+
else:
|
| 457 |
+
net = load_t2i_adapter(controlnet_data)
|
| 458 |
+
if net is None:
|
| 459 |
+
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
| 460 |
+
return net
|
| 461 |
+
|
| 462 |
+
if controlnet_config is None:
|
| 463 |
+
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
| 464 |
+
supported_inference_dtypes = model_config.supported_inference_dtypes
|
| 465 |
+
controlnet_config = model_config.unet_config
|
| 466 |
+
|
| 467 |
+
load_device = comfy.model_management.get_torch_device()
|
| 468 |
+
if supported_inference_dtypes is None:
|
| 469 |
+
unet_dtype = comfy.model_management.unet_dtype()
|
| 470 |
+
else:
|
| 471 |
+
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
| 472 |
+
|
| 473 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
| 474 |
+
if manual_cast_dtype is not None:
|
| 475 |
+
controlnet_config["operations"] = comfy.ops.manual_cast
|
| 476 |
+
controlnet_config["dtype"] = unet_dtype
|
| 477 |
+
controlnet_config.pop("out_channels")
|
| 478 |
+
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
| 479 |
+
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
| 480 |
+
|
| 481 |
+
if pth:
|
| 482 |
+
if 'difference' in controlnet_data:
|
| 483 |
+
if model is not None:
|
| 484 |
+
comfy.model_management.load_models_gpu([model])
|
| 485 |
+
model_sd = model.model_state_dict()
|
| 486 |
+
for x in controlnet_data:
|
| 487 |
+
c_m = "control_model."
|
| 488 |
+
if x.startswith(c_m):
|
| 489 |
+
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
| 490 |
+
if sd_key in model_sd:
|
| 491 |
+
cd = controlnet_data[x]
|
| 492 |
+
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
| 493 |
+
else:
|
| 494 |
+
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
| 495 |
+
|
| 496 |
+
class WeightsLoader(torch.nn.Module):
|
| 497 |
+
pass
|
| 498 |
+
w = WeightsLoader()
|
| 499 |
+
w.control_model = control_model
|
| 500 |
+
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
| 501 |
+
else:
|
| 502 |
+
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
| 503 |
+
|
| 504 |
+
if len(missing) > 0:
|
| 505 |
+
logging.warning("missing controlnet keys: {}".format(missing))
|
| 506 |
+
|
| 507 |
+
if len(unexpected) > 0:
|
| 508 |
+
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
| 509 |
+
|
| 510 |
+
global_average_pooling = False
|
| 511 |
+
filename = os.path.splitext(ckpt_path)[0]
|
| 512 |
+
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
| 513 |
+
global_average_pooling = True
|
| 514 |
+
|
| 515 |
+
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
| 516 |
+
return control
|
| 517 |
+
|
| 518 |
+
class T2IAdapter(ControlBase):
|
| 519 |
+
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
| 520 |
+
super().__init__(device)
|
| 521 |
+
self.t2i_model = t2i_model
|
| 522 |
+
self.channels_in = channels_in
|
| 523 |
+
self.control_input = None
|
| 524 |
+
self.compression_ratio = compression_ratio
|
| 525 |
+
self.upscale_algorithm = upscale_algorithm
|
| 526 |
+
|
| 527 |
+
def scale_image_to(self, width, height):
|
| 528 |
+
unshuffle_amount = self.t2i_model.unshuffle_amount
|
| 529 |
+
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
| 530 |
+
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
| 531 |
+
return width, height
|
| 532 |
+
|
| 533 |
+
def get_control(self, x_noisy, t, cond, batched_number):
|
| 534 |
+
control_prev = None
|
| 535 |
+
if self.previous_controlnet is not None:
|
| 536 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
| 537 |
+
|
| 538 |
+
if self.timestep_range is not None:
|
| 539 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
| 540 |
+
if control_prev is not None:
|
| 541 |
+
return control_prev
|
| 542 |
+
else:
|
| 543 |
+
return None
|
| 544 |
+
|
| 545 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
| 546 |
+
if self.cond_hint is not None:
|
| 547 |
+
del self.cond_hint
|
| 548 |
+
self.control_input = None
|
| 549 |
+
self.cond_hint = None
|
| 550 |
+
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
|
| 551 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
|
| 552 |
+
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
| 553 |
+
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
| 554 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
| 555 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
| 556 |
+
if self.control_input is None:
|
| 557 |
+
self.t2i_model.to(x_noisy.dtype)
|
| 558 |
+
self.t2i_model.to(self.device)
|
| 559 |
+
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
| 560 |
+
self.t2i_model.cpu()
|
| 561 |
+
|
| 562 |
+
control_input = {}
|
| 563 |
+
for k in self.control_input:
|
| 564 |
+
control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
|
| 565 |
+
|
| 566 |
+
return self.control_merge(control_input, control_prev, x_noisy.dtype)
|
| 567 |
+
|
| 568 |
+
def copy(self):
|
| 569 |
+
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
|
| 570 |
+
self.copy_to(c)
|
| 571 |
+
return c
|
| 572 |
+
|
| 573 |
+
def load_t2i_adapter(t2i_data):
|
| 574 |
+
compression_ratio = 8
|
| 575 |
+
upscale_algorithm = 'nearest-exact'
|
| 576 |
+
|
| 577 |
+
if 'adapter' in t2i_data:
|
| 578 |
+
t2i_data = t2i_data['adapter']
|
| 579 |
+
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
|
| 580 |
+
prefix_replace = {}
|
| 581 |
+
for i in range(4):
|
| 582 |
+
for j in range(2):
|
| 583 |
+
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
| 584 |
+
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
|
| 585 |
+
prefix_replace["adapter."] = ""
|
| 586 |
+
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
| 587 |
+
keys = t2i_data.keys()
|
| 588 |
+
|
| 589 |
+
if "body.0.in_conv.weight" in keys:
|
| 590 |
+
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
| 591 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
| 592 |
+
elif 'conv_in.weight' in keys:
|
| 593 |
+
cin = t2i_data['conv_in.weight'].shape[1]
|
| 594 |
+
channel = t2i_data['conv_in.weight'].shape[0]
|
| 595 |
+
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
| 596 |
+
use_conv = False
|
| 597 |
+
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
| 598 |
+
if len(down_opts) > 0:
|
| 599 |
+
use_conv = True
|
| 600 |
+
xl = False
|
| 601 |
+
if cin == 256 or cin == 768:
|
| 602 |
+
xl = True
|
| 603 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
| 604 |
+
elif "backbone.0.0.weight" in keys:
|
| 605 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
| 606 |
+
compression_ratio = 32
|
| 607 |
+
upscale_algorithm = 'bilinear'
|
| 608 |
+
elif "backbone.10.blocks.0.weight" in keys:
|
| 609 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
| 610 |
+
compression_ratio = 1
|
| 611 |
+
upscale_algorithm = 'nearest-exact'
|
| 612 |
+
else:
|
| 613 |
+
return None
|
| 614 |
+
|
| 615 |
+
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
| 616 |
+
if len(missing) > 0:
|
| 617 |
+
logging.warning("t2i missing {}".format(missing))
|
| 618 |
+
|
| 619 |
+
if len(unexpected) > 0:
|
| 620 |
+
logging.debug("t2i unexpected {}".format(unexpected))
|
| 621 |
+
|
| 622 |
+
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
|
ComfyUI/comfy/diffusers_convert.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import torch
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
| 6 |
+
|
| 7 |
+
# =================#
|
| 8 |
+
# UNet Conversion #
|
| 9 |
+
# =================#
|
| 10 |
+
|
| 11 |
+
unet_conversion_map = [
|
| 12 |
+
# (stable-diffusion, HF Diffusers)
|
| 13 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
| 14 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
| 15 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
| 16 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
| 17 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
| 18 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
| 19 |
+
("out.0.weight", "conv_norm_out.weight"),
|
| 20 |
+
("out.0.bias", "conv_norm_out.bias"),
|
| 21 |
+
("out.2.weight", "conv_out.weight"),
|
| 22 |
+
("out.2.bias", "conv_out.bias"),
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
unet_conversion_map_resnet = [
|
| 26 |
+
# (stable-diffusion, HF Diffusers)
|
| 27 |
+
("in_layers.0", "norm1"),
|
| 28 |
+
("in_layers.2", "conv1"),
|
| 29 |
+
("out_layers.0", "norm2"),
|
| 30 |
+
("out_layers.3", "conv2"),
|
| 31 |
+
("emb_layers.1", "time_emb_proj"),
|
| 32 |
+
("skip_connection", "conv_shortcut"),
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
unet_conversion_map_layer = []
|
| 36 |
+
# hardcoded number of downblocks and resnets/attentions...
|
| 37 |
+
# would need smarter logic for other networks.
|
| 38 |
+
for i in range(4):
|
| 39 |
+
# loop over downblocks/upblocks
|
| 40 |
+
|
| 41 |
+
for j in range(2):
|
| 42 |
+
# loop over resnets/attentions for downblocks
|
| 43 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
| 44 |
+
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
| 45 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
| 46 |
+
|
| 47 |
+
if i < 3:
|
| 48 |
+
# no attention layers in down_blocks.3
|
| 49 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
| 50 |
+
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
| 51 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
| 52 |
+
|
| 53 |
+
for j in range(3):
|
| 54 |
+
# loop over resnets/attentions for upblocks
|
| 55 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
| 56 |
+
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
| 57 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
| 58 |
+
|
| 59 |
+
if i > 0:
|
| 60 |
+
# no attention layers in up_blocks.0
|
| 61 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
| 62 |
+
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
| 63 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
| 64 |
+
|
| 65 |
+
if i < 3:
|
| 66 |
+
# no downsample in down_blocks.3
|
| 67 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
| 68 |
+
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
| 69 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 70 |
+
|
| 71 |
+
# no upsample in up_blocks.3
|
| 72 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 73 |
+
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
| 74 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 75 |
+
|
| 76 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
| 77 |
+
sd_mid_atn_prefix = "middle_block.1."
|
| 78 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
| 79 |
+
|
| 80 |
+
for j in range(2):
|
| 81 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
| 82 |
+
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
| 83 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def convert_unet_state_dict(unet_state_dict):
|
| 87 |
+
# buyer beware: this is a *brittle* function,
|
| 88 |
+
# and correct output requires that all of these pieces interact in
|
| 89 |
+
# the exact order in which I have arranged them.
|
| 90 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
| 91 |
+
for sd_name, hf_name in unet_conversion_map:
|
| 92 |
+
mapping[hf_name] = sd_name
|
| 93 |
+
for k, v in mapping.items():
|
| 94 |
+
if "resnets" in k:
|
| 95 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
| 96 |
+
v = v.replace(hf_part, sd_part)
|
| 97 |
+
mapping[k] = v
|
| 98 |
+
for k, v in mapping.items():
|
| 99 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
| 100 |
+
v = v.replace(hf_part, sd_part)
|
| 101 |
+
mapping[k] = v
|
| 102 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
| 103 |
+
return new_state_dict
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# ================#
|
| 107 |
+
# VAE Conversion #
|
| 108 |
+
# ================#
|
| 109 |
+
|
| 110 |
+
vae_conversion_map = [
|
| 111 |
+
# (stable-diffusion, HF Diffusers)
|
| 112 |
+
("nin_shortcut", "conv_shortcut"),
|
| 113 |
+
("norm_out", "conv_norm_out"),
|
| 114 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
for i in range(4):
|
| 118 |
+
# down_blocks have two resnets
|
| 119 |
+
for j in range(2):
|
| 120 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
| 121 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
| 122 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
| 123 |
+
|
| 124 |
+
if i < 3:
|
| 125 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
| 126 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
| 127 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 128 |
+
|
| 129 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 130 |
+
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
| 131 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 132 |
+
|
| 133 |
+
# up_blocks have three resnets
|
| 134 |
+
# also, up blocks in hf are numbered in reverse from sd
|
| 135 |
+
for j in range(3):
|
| 136 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
| 137 |
+
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
| 138 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
| 139 |
+
|
| 140 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
| 141 |
+
for i in range(2):
|
| 142 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
| 143 |
+
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
| 144 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 145 |
+
|
| 146 |
+
vae_conversion_map_attn = [
|
| 147 |
+
# (stable-diffusion, HF Diffusers)
|
| 148 |
+
("norm.", "group_norm."),
|
| 149 |
+
("q.", "query."),
|
| 150 |
+
("k.", "key."),
|
| 151 |
+
("v.", "value."),
|
| 152 |
+
("q.", "to_q."),
|
| 153 |
+
("k.", "to_k."),
|
| 154 |
+
("v.", "to_v."),
|
| 155 |
+
("proj_out.", "to_out.0."),
|
| 156 |
+
("proj_out.", "proj_attn."),
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def reshape_weight_for_sd(w):
|
| 161 |
+
# convert HF linear weights to SD conv2d weights
|
| 162 |
+
return w.reshape(*w.shape, 1, 1)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def convert_vae_state_dict(vae_state_dict):
|
| 166 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
| 167 |
+
for k, v in mapping.items():
|
| 168 |
+
for sd_part, hf_part in vae_conversion_map:
|
| 169 |
+
v = v.replace(hf_part, sd_part)
|
| 170 |
+
mapping[k] = v
|
| 171 |
+
for k, v in mapping.items():
|
| 172 |
+
if "attentions" in k:
|
| 173 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
| 174 |
+
v = v.replace(hf_part, sd_part)
|
| 175 |
+
mapping[k] = v
|
| 176 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 177 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
| 178 |
+
for k, v in new_state_dict.items():
|
| 179 |
+
for weight_name in weights_to_convert:
|
| 180 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 181 |
+
logging.debug(f"Reshaping {k} for SD format")
|
| 182 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
| 183 |
+
return new_state_dict
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# =========================#
|
| 187 |
+
# Text Encoder Conversion #
|
| 188 |
+
# =========================#
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
textenc_conversion_lst = [
|
| 192 |
+
# (stable-diffusion, HF Diffusers)
|
| 193 |
+
("resblocks.", "text_model.encoder.layers."),
|
| 194 |
+
("ln_1", "layer_norm1"),
|
| 195 |
+
("ln_2", "layer_norm2"),
|
| 196 |
+
(".c_fc.", ".fc1."),
|
| 197 |
+
(".c_proj.", ".fc2."),
|
| 198 |
+
(".attn", ".self_attn"),
|
| 199 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
| 200 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
| 201 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
| 202 |
+
]
|
| 203 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
| 204 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
| 205 |
+
|
| 206 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
| 207 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
| 208 |
+
|
| 209 |
+
# This function exists because at the time of writing torch.cat can't do fp8 with cuda
|
| 210 |
+
def cat_tensors(tensors):
|
| 211 |
+
x = 0
|
| 212 |
+
for t in tensors:
|
| 213 |
+
x += t.shape[0]
|
| 214 |
+
|
| 215 |
+
shape = [x] + list(tensors[0].shape)[1:]
|
| 216 |
+
out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
|
| 217 |
+
|
| 218 |
+
x = 0
|
| 219 |
+
for t in tensors:
|
| 220 |
+
out[x:x + t.shape[0]] = t
|
| 221 |
+
x += t.shape[0]
|
| 222 |
+
|
| 223 |
+
return out
|
| 224 |
+
|
| 225 |
+
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
|
| 226 |
+
new_state_dict = {}
|
| 227 |
+
capture_qkv_weight = {}
|
| 228 |
+
capture_qkv_bias = {}
|
| 229 |
+
for k, v in text_enc_dict.items():
|
| 230 |
+
if not k.startswith(prefix):
|
| 231 |
+
continue
|
| 232 |
+
if (
|
| 233 |
+
k.endswith(".self_attn.q_proj.weight")
|
| 234 |
+
or k.endswith(".self_attn.k_proj.weight")
|
| 235 |
+
or k.endswith(".self_attn.v_proj.weight")
|
| 236 |
+
):
|
| 237 |
+
k_pre = k[: -len(".q_proj.weight")]
|
| 238 |
+
k_code = k[-len("q_proj.weight")]
|
| 239 |
+
if k_pre not in capture_qkv_weight:
|
| 240 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
| 241 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
| 242 |
+
continue
|
| 243 |
+
|
| 244 |
+
if (
|
| 245 |
+
k.endswith(".self_attn.q_proj.bias")
|
| 246 |
+
or k.endswith(".self_attn.k_proj.bias")
|
| 247 |
+
or k.endswith(".self_attn.v_proj.bias")
|
| 248 |
+
):
|
| 249 |
+
k_pre = k[: -len(".q_proj.bias")]
|
| 250 |
+
k_code = k[-len("q_proj.bias")]
|
| 251 |
+
if k_pre not in capture_qkv_bias:
|
| 252 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
| 253 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
text_proj = "transformer.text_projection.weight"
|
| 257 |
+
if k.endswith(text_proj):
|
| 258 |
+
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
|
| 259 |
+
else:
|
| 260 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
| 261 |
+
new_state_dict[relabelled_key] = v
|
| 262 |
+
|
| 263 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
| 264 |
+
if None in tensors:
|
| 265 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 266 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 267 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
|
| 268 |
+
|
| 269 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
| 270 |
+
if None in tensors:
|
| 271 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 272 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 273 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
|
| 274 |
+
|
| 275 |
+
return new_state_dict
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
| 279 |
+
return text_enc_dict
|
| 280 |
+
|
| 281 |
+
|
ComfyUI/comfy/diffusers_load.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import comfy.sd
|
| 4 |
+
|
| 5 |
+
def first_file(path, filenames):
|
| 6 |
+
for f in filenames:
|
| 7 |
+
p = os.path.join(path, f)
|
| 8 |
+
if os.path.exists(p):
|
| 9 |
+
return p
|
| 10 |
+
return None
|
| 11 |
+
|
| 12 |
+
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
|
| 13 |
+
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
|
| 14 |
+
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
|
| 15 |
+
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
|
| 16 |
+
|
| 17 |
+
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
|
| 18 |
+
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
|
| 19 |
+
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
|
| 20 |
+
|
| 21 |
+
text_encoder_paths = [text_encoder1_path]
|
| 22 |
+
if text_encoder2_path is not None:
|
| 23 |
+
text_encoder_paths.append(text_encoder2_path)
|
| 24 |
+
|
| 25 |
+
unet = comfy.sd.load_unet(unet_path)
|
| 26 |
+
|
| 27 |
+
clip = None
|
| 28 |
+
if output_clip:
|
| 29 |
+
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
| 30 |
+
|
| 31 |
+
vae = None
|
| 32 |
+
if output_vae:
|
| 33 |
+
sd = comfy.utils.load_torch_file(vae_path)
|
| 34 |
+
vae = comfy.sd.VAE(sd=sd)
|
| 35 |
+
|
| 36 |
+
return (unet, clip, vae)
|
ComfyUI/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc
ADDED
|
Binary file (28.5 kB). View file
|
|
|