File size: 13,095 Bytes
e0fa687
13755f8
e0fa687
 
 
 
 
 
 
 
 
 
 
 
 
6179a99
 
 
e0fa687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6179a99
 
 
e0fa687
6179a99
 
e0fa687
6179a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fa687
6179a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fa687
 
 
 
 
 
 
 
 
6179a99
e0fa687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bf79a
5c47ee8
e0fa687
 
 
 
 
 
 
 
 
 
 
 
 
 
6179a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fa687
6179a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fa687
6179a99
 
 
e0fa687
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import Chroma # Ny import för Chroma
from langchain_core.documents import Document # Ny import för att skapa dokument
import shutil # För att hantera kataloger

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}

# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# --- Start ChromaDB Setup ---
# Define the directory for ChromaDB persistence
CHROMA_DB_DIR = "./chroma_db"

# Build embeddings (this remains the same)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768

# Initialize ChromaDB
# If the directory exists, load the existing vector store.
# Otherwise, create a new one and add some dummy documents.
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR):
    print(f"Loading existing ChromaDB from {CHROMA_DB_DIR}")
    vector_store = Chroma(
        persist_directory=CHROMA_DB_DIR,
        embedding_function=embeddings
    )
else:
    print(f"Creating new ChromaDB at {CHROMA_DB_DIR} and adding dummy documents.")
    # Ensure the directory is clean before creating new
    if os.path.exists(CHROMA_DB_DIR):
        shutil.rmtree(CHROMA_DB_DIR)
    os.makedirs(CHROMA_DB_DIR)

    # Example dummy documents to populate the vector store
    # In a real application, you would load your actual documents here
    documents = [
        Document(page_content="What is the capital of France?", metadata={"source": "internal", "answer": "Paris"}),
        Document(page_content="Who wrote Hamlet?", metadata={"source": "internal", "answer": "William Shakespeare"}),
        Document(page_content="What is the highest mountain in the world?", metadata={"source": "internal", "answer": "Mount Everest"}),
        Document(page_content="When was the internet invented?", metadata={"source": "internal", "answer": "The internet, as we know it, evolved from ARPANET in the late 1960s and early 1970s. The TCP/IP protocol, which forms the basis of the internet, was standardized in 1978."}),
        Document(page_content="What is the square root of 64?", metadata={"source": "internal", "answer": "8"}),
        Document(page_content="Who is the current president of the United States?", metadata={"source": "internal", "answer": "Joe Biden"}),
        Document(page_content="What is the chemical symbol for water?", metadata={"source": "internal", "answer": "H2O"}),
        Document(page_content="What is the largest ocean on Earth?", metadata={"source": "internal", "answer": "Pacific Ocean"}),
        Document(page_content="What is the speed of light?", metadata={"source": "internal", "answer": "Approximately 299,792,458 meters per second in a vacuum."}),
        Document(page_content="What is the capital of Sweden?", metadata={"source": "internal", "answer": "Stockholm"}),
    ]

    vector_store = Chroma.from_documents(
        documents=documents,
        embedding=embeddings,
        persist_directory=CHROMA_DB_DIR
    )
    vector_store.persist() # Save the new vector store to disk
    print("ChromaDB initialized and persisted with dummy documents.")

# Create retriever tool using the Chroma vector store
retriever_tool = create_retriever_tool( # Changed variable name to avoid conflict with function name
    retriever=vector_store.as_retriever(),
    name="Question_Search", # Changed name to be more descriptive and valid for tool use
    description="A tool to retrieve similar questions from a vector store and their answers.",
)

# Add the new retriever tool to your list of tools
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    retriever_tool, # Add the new retriever tool here
]

# Build graph function
def build_graph(provider: str = "google"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    from langchain_core.messages import AIMessage

    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        # Use the retriever tool to get similar documents
        similar_docs = retriever_tool.invoke(query) # Call the tool directly
        
        # The tool returns a list of Documents, so we need to process it
        # Assuming the tool returns a list of documents, we take the first one
        if similar_docs:
            # The tool output is a string representation of the documents.
            # We need to parse it or adjust the tool to return structured data.
            # For simplicity, let's assume the tool returns a list of Document objects
            # or a string that can be directly used.
            # Given the original `retriever` node, it expected `similar_question[0].page_content`.
            # If `retriever_tool.invoke(query)` returns a list of Document objects,
            # then `similar_docs[0].page_content` is correct.
            # If it returns a string, we need to adapt.
            # For now, let's assume it returns a list of Documents or a string that contains the answer.

            # If retriever_tool returns a string directly (as per your tool definition):
            # content = similar_docs # This would be the string output from the tool
            
            # If retriever_tool returns a list of Document objects from its internal retriever:
            # Let's assume the `retriever_tool` internally uses `vector_store.as_retriever().invoke(query)`
            # which returns a list of `Document` objects.
            # The `create_retriever_tool` wraps this, so `retriever_tool.invoke` will return a string
            # that is the `page_content` of the retrieved documents.
            
            # The original `retriever` node was using `vector_store.similarity_search` directly.
            # Now `retriever_tool` is a LangChain tool.
            # When `retriever_tool.invoke(query)` is called, it will return the formatted string
            # from the `create_retriever_tool` definition.
            # So, `similar_docs` will be a string.

            # We need to parse the `similar_docs` string to extract the answer.
            # The `Question_Search` tool description is "A tool to retrieve similar questions from a vector store and their answers."
            # The `create_retriever_tool` automatically formats the output of the retriever.
            # Let's assume the output string from `retriever_tool.invoke(query)` will look something like:
            # "content='What is the capital of Sweden?' metadata={'source': 'internal', 'answer': 'Stockholm'}"
            # We need to extract the 'answer' part.

            # A more robust way would be to make the retriever node *call* the tool,
            # and then the LLM decides if it wants to use the tool.
            # However, your current graph structure has a dedicated "retriever" node
            # that directly fetches and returns an AIMessage.
            
            # Let's refine the retriever node to parse the output of the tool more robustly.
            # The `create_retriever_tool` returns a string where documents are joined.
            # We need to extract the content that would be the "answer".
            
            # The dummy documents have `metadata={"source": "internal", "answer": "..."}`.
            # The `create_retriever_tool` will return `doc.page_content` by default.
            # So, `similar_docs` will contain the question itself.
            # We need to ensure the retriever provides the *answer* not just the question.

            # Let's adjust the `retriever` node to directly access the `vector_store`
            # for `similarity_search` and then extract the answer from metadata,
            # similar to your original implementation. This bypasses the tool wrapper
            # for this specific node, ensuring we get the full Document object.
            
            similar_doc = vector_store.similarity_search(query, k=1)[0]
            
            # Check if an 'answer' is directly available in metadata
            if "answer" in similar_doc.metadata:
                answer = similar_doc.metadata["answer"]
            elif "Final answer :" in similar_doc.page_content:
                answer = similar_doc.page_content.split("Final answer :")[-1].strip()
            else:
                answer = similar_doc.page_content.strip() # Fallback to page_content if no explicit answer

            return {"messages": [AIMessage(content=answer)]}
        else:
            # If no similar documents found, return an empty AIMessage or a message indicating no answer
            return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]}


    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)

    # Retriever ist Start und Endpunkt
    builder.set_entry_point("retriever")
    builder.set_finish_point("retriever")

    # Compile graph
    return builder.compile()