File size: 5,104 Bytes
d3eacbd 10e9b7d eccf8e4 3c4371f fb741d6 10e9b7d 3db6293 e80aab9 d3eacbd fb741d6 3c4371f 7e4a06b fb741d6 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 d2f6b32 d3eacbd 31243f4 7d65c66 31243f4 7d65c66 fb741d6 e80aab9 7d65c66 fb741d6 31243f4 fb741d6 d3eacbd fb741d6 31243f4 fb741d6 31243f4 fb741d6 7b248e2 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 d3eacbd 7d65c66 fb741d6 7b248e2 d3eacbd e80aab9 d3eacbd e80aab9 d3eacbd e80aab9 3c4371f fb741d6 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 fb741d6 7d65c66 d3eacbd 7d65c66 3c4371f 31243f4 fb741d6 d3eacbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# --- app.py ---
import os
import gradio as gr
import requests
import pandas as pd
from agent import GaiaAgent
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
agent = GaiaAgent()
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print("\n--- STARTING AGENT RUN ---")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
final_answer, trace = agent(question_text)
print(f"\n--- QUESTION ---\nTask ID: {task_id}\nQuestion: {question_text}")
print(f"\n--- REASONING TRACE ---\n{trace}")
print(f"\n--- FINAL ANSWER (SUBMITTED) ---\n{final_answer}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": final_answer,
"reasoning_trace": trace
})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": final_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
def evaluate(question, files):
uploaded_files = {}
if files:
for file in files:
file_path = file.name
file.save(file_path)
uploaded_files[file.name] = file_path
prediction, reasoning = agent(question, uploaded_files)
return prediction, reasoning
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Interface")
gr.Markdown("Logga in och kör agenten på alla frågor eller testa enskilda.")
with gr.Tab("✅ Run Full Evaluation"):
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Result")
results_table = gr.DataFrame(label="Answers")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
with gr.Tab("🔍 Test Manual Question"):
question = gr.Textbox(label="Question")
files = gr.File(label="Optional files (mp3, wav, xlsx)", file_types=['.mp3', '.wav', '.xlsx'], type="file", file_count="multiple")
submit = gr.Button("Run Agent")
answer = gr.Textbox(label="Answer")
reasoning = gr.Textbox(label="Reasoning Trace")
submit.click(fn=evaluate, inputs=[question, files], outputs=[answer, reasoning])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|