File size: 5,444 Bytes
10e9b7d eccf8e4 ed08848 fbae0df ed08848 10e9b7d 3db6293 e80aab9 fb741d6 3c4371f 7e4a06b fb741d6 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 d2f6b32 987f2c6 31243f4 7d65c66 31243f4 7d65c66 fb741d6 e80aab9 7d65c66 fb741d6 31243f4 fb741d6 987f2c6 fb741d6 31243f4 fb741d6 31243f4 fb741d6 7b248e2 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 987f2c6 7d65c66 fb741d6 7b248e2 e80aab9 d3eacbd 987f2c6 e80aab9 3c4371f fb741d6 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 fb741d6 7d65c66 987f2c6 7d65c66 3c4371f 31243f4 fb741d6 d3eacbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import gradio as gr
import requests
import pandas as pd
import subprocess
import sys # Import sys
# --- START: Force DDGS installation workaround ---
try:
# Check if duckduckgo_search (provided by ddgs) can be imported
import duckduckgo_search
print("duckduckgo_search (via ddgs) is already installed.")
except ImportError:
print("duckduckgo_search not found. Attempting to install ddgs...")
try:
# Use ddgs as it's the updated package name
subprocess.check_call([sys.executable, "-m", "pip", "install", "ddgs>=4.0.0"])
print("ddgs installed successfully.")
except Exception as e:
print(f"Failed to install ddgs: {e}")
# Critical error, re-raise to stop startup if essential dependency fails
raise RuntimeError(f"CRITICAL: Failed to install ddgs: {e}")
# --- END: Force DDGS installation workaround ---
from agent import GaiaAgent # This line should now run after ddgs is confirmed installed
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print("\n--- STARTING AGENT RUN ---")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
final_answer, trace = agent(question_text)
print("\n--- QUESTION ---")
print(f"Task ID: {task_id}")
print(f"Question: {question_text}")
print("\n--- REASONING TRACE ---")
print(trace)
print("\n--- FINAL ANSWER (SUBMITTED) ---")
print(final_answer)
answers_payload.append({
"task_id": task_id,
"submitted_answer": final_answer,
"reasoning_trace": trace
})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": final_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Submission Interface")
gr.Markdown("""
Logga in och kör agenten.\n
Du behöver INTE en OpenAI API-nyckel längre. Agenten kör en lokal modell.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Result")
results_table = gr.DataFrame(label="Answers")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|