Spaces:
Sleeping
Sleeping
File size: 9,390 Bytes
e0fa687 13755f8 e0fa687 9befc16 e0fa687 6179a99 dff05c1 e0fa687 6179a99 e0fa687 6179a99 9befc16 6179a99 9befc16 6179a99 e0fa687 9befc16 6179a99 9befc16 6179a99 9befc16 6179a99 9befc16 6179a99 e0fa687 9befc16 e0fa687 9befc16 e0fa687 b7bf79a 5c47ee8 e0fa687 9befc16 e0fa687 9befc16 6179a99 9befc16 6179a99 9befc16 6179a99 e0fa687 6179a99 e0fa687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
import shutil
import pandas as pd # Ny import för pandas
import json # För att parsa metadata-kolumnen
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# --- Start ChromaDB Setup ---
# Define the directory for ChromaDB persistence
CHROMA_DB_DIR = "./chroma_db"
CSV_FILE_PATH = "./supabase_docs.csv" # Path to your CSV file
# Build embeddings (this remains the same)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
# Initialize ChromaDB
# If the directory exists and contains data, load the existing vector store.
# Otherwise, create a new one and add documents from the CSV file.
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR):
print(f"Loading existing ChromaDB from {CHROMA_DB_DIR}")
vector_store = Chroma(
persist_directory=CHROMA_DB_DIR,
embedding_function=embeddings
)
else:
print(f"Creating new ChromaDB at {CHROMA_DB_DIR} and loading documents from {CSV_FILE_PATH}.")
# Ensure the directory is clean before creating new
if os.path.exists(CHROMA_DB_DIR):
shutil.rmtree(CHROMA_DB_DIR)
os.makedirs(CHROMA_DB_DIR)
# Load data from the CSV file
if not os.path.exists(CSV_FILE_PATH):
raise FileNotFoundError(f"CSV file not found at {CSV_FILE_PATH}. Please ensure it's in the root directory.")
df = pd.read_csv(CSV_FILE_PATH)
documents = []
for index, row in df.iterrows():
content = row["content"]
# Extract the question part from the content
# Assuming the question is everything before "Final answer :"
question_part = content.split("Final answer :")[0].strip()
# Extract the final answer part from the content
final_answer_part = content.split("Final answer :")[-1].strip() if "Final answer :" in content else ""
# Parse the metadata string into a dictionary
# The metadata column might be stored as a string representation of a dictionary
try:
metadata = json.loads(row["metadata"].replace("'", "\"")) # Replace single quotes for valid JSON
except json.JSONDecodeError:
metadata = {} # Fallback if parsing fails
# Add the extracted final answer to the metadata for easy retrieval
metadata["final_answer"] = final_answer_part
# Create a Document object. The page_content should be the question for similarity search.
# The answer will be in metadata.
documents.append(Document(page_content=question_part, metadata=metadata))
if not documents:
print("No documents loaded from CSV. ChromaDB will be empty.")
# Create an empty ChromaDB if no documents are found
vector_store = Chroma(
persist_directory=CHROMA_DB_DIR,
embedding_function=embeddings
)
else:
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory=CHROMA_DB_DIR
)
vector_store.persist() # Save the new vector store to disk
print(f"ChromaDB initialized and persisted with {len(documents)} documents from CSV.")
# Create retriever tool using the Chroma vector store
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question_Search",
description="A tool to retrieve similar questions from a vector store. The retrieved document's metadata contains the 'final_answer' to the question.",
)
# Add the new retriever tool to your list of tools
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
retriever_tool,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
from langchain_core.messages import AIMessage
def retriever(state: MessagesState):
query = state["messages"][-1].content
# Use the vector_store directly for similarity search to get the full Document object
similar_docs = vector_store.similarity_search(query, k=1)
if similar_docs:
similar_doc = similar_docs[0]
# Prioritize 'final_answer' from metadata, then check page_content
if "final_answer" in similar_doc.metadata and similar_doc.metadata["final_answer"]:
answer = similar_doc.metadata["final_answer"]
elif "Final answer :" in similar_doc.page_content:
answer = similar_doc.page_content.split("Final answer :")[-1].strip()
else:
answer = similar_doc.page_content.strip() # Fallback to page_content if no explicit answer
# The system prompt expects "FINAL ANSWER: [ANSWER]".
# We should return the extracted answer directly, as the prompt handles the formatting.
return {"messages": [AIMessage(content=answer)]}
else:
return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.set_entry_point("retriever")
builder.set_finish_point("retriever")
return builder.compile()
|