File size: 9,390 Bytes
e0fa687
13755f8
e0fa687
 
 
 
 
 
 
 
 
 
 
 
 
9befc16
 
 
 
 
e0fa687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6179a99
 
 
dff05c1
e0fa687
6179a99
 
e0fa687
6179a99
9befc16
 
6179a99
 
 
 
 
 
 
9befc16
6179a99
 
 
 
e0fa687
9befc16
 
 
6179a99
9befc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6179a99
 
9befc16
6179a99
9befc16
 
6179a99
 
 
e0fa687
 
 
 
 
 
 
 
 
9befc16
e0fa687
 
 
 
 
 
 
 
9befc16
e0fa687
 
 
 
 
b7bf79a
5c47ee8
e0fa687
 
9befc16
e0fa687
 
 
 
 
 
 
 
 
 
9befc16
 
6179a99
 
9befc16
 
 
 
6179a99
 
 
 
 
9befc16
 
6179a99
e0fa687
6179a99
 
e0fa687
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
import shutil
import pandas as pd # Ny import för pandas
import json # För att parsa metadata-kolumnen

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}

# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# --- Start ChromaDB Setup ---
# Define the directory for ChromaDB persistence
CHROMA_DB_DIR = "./chroma_db"
CSV_FILE_PATH = "./supabase_docs.csv" # Path to your CSV file

# Build embeddings (this remains the same)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768

# Initialize ChromaDB
# If the directory exists and contains data, load the existing vector store.
# Otherwise, create a new one and add documents from the CSV file.
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR):
    print(f"Loading existing ChromaDB from {CHROMA_DB_DIR}")
    vector_store = Chroma(
        persist_directory=CHROMA_DB_DIR,
        embedding_function=embeddings
    )
else:
    print(f"Creating new ChromaDB at {CHROMA_DB_DIR} and loading documents from {CSV_FILE_PATH}.")
    # Ensure the directory is clean before creating new
    if os.path.exists(CHROMA_DB_DIR):
        shutil.rmtree(CHROMA_DB_DIR)
    os.makedirs(CHROMA_DB_DIR)

    # Load data from the CSV file
    if not os.path.exists(CSV_FILE_PATH):
        raise FileNotFoundError(f"CSV file not found at {CSV_FILE_PATH}. Please ensure it's in the root directory.")

    df = pd.read_csv(CSV_FILE_PATH)
    documents = []
    for index, row in df.iterrows():
        content = row["content"]
        
        # Extract the question part from the content
        # Assuming the question is everything before "Final answer :"
        question_part = content.split("Final answer :")[0].strip()
        
        # Extract the final answer part from the content
        final_answer_part = content.split("Final answer :")[-1].strip() if "Final answer :" in content else ""

        # Parse the metadata string into a dictionary
        # The metadata column might be stored as a string representation of a dictionary
        try:
            metadata = json.loads(row["metadata"].replace("'", "\"")) # Replace single quotes for valid JSON
        except json.JSONDecodeError:
            metadata = {} # Fallback if parsing fails
        
        # Add the extracted final answer to the metadata for easy retrieval
        metadata["final_answer"] = final_answer_part
        
        # Create a Document object. The page_content should be the question for similarity search.
        # The answer will be in metadata.
        documents.append(Document(page_content=question_part, metadata=metadata))

    if not documents:
        print("No documents loaded from CSV. ChromaDB will be empty.")
        # Create an empty ChromaDB if no documents are found
        vector_store = Chroma(
            persist_directory=CHROMA_DB_DIR,
            embedding_function=embeddings
        )
    else:
        vector_store = Chroma.from_documents(
            documents=documents,
            embedding=embeddings,
            persist_directory=CHROMA_DB_DIR
        )
        vector_store.persist() # Save the new vector store to disk
        print(f"ChromaDB initialized and persisted with {len(documents)} documents from CSV.")

# Create retriever tool using the Chroma vector store
retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question_Search",
    description="A tool to retrieve similar questions from a vector store. The retrieved document's metadata contains the 'final_answer' to the question.",
)

# Add the new retriever tool to your list of tools
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    retriever_tool,
]

# Build graph function
def build_graph(provider: str = "google"):
    """Build the graph"""
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    
    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    from langchain_core.messages import AIMessage

    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        # Use the vector_store directly for similarity search to get the full Document object
        similar_docs = vector_store.similarity_search(query, k=1)
        
        if similar_docs:
            similar_doc = similar_docs[0]
            # Prioritize 'final_answer' from metadata, then check page_content
            if "final_answer" in similar_doc.metadata and similar_doc.metadata["final_answer"]:
                answer = similar_doc.metadata["final_answer"]
            elif "Final answer :" in similar_doc.page_content:
                answer = similar_doc.page_content.split("Final answer :")[-1].strip()
            else:
                answer = similar_doc.page_content.strip() # Fallback to page_content if no explicit answer

            # The system prompt expects "FINAL ANSWER: [ANSWER]".
            # We should return the extracted answer directly, as the prompt handles the formatting.
            return {"messages": [AIMessage(content=answer)]}
        else:
            return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.set_entry_point("retriever")
    builder.set_finish_point("retriever")

    return builder.compile()