|
import os |
|
import json |
|
import re |
|
from typing import Tuple, Dict, Any |
|
from transformers import pipeline |
|
from tools.asr_tool import transcribe_audio |
|
from tools.excel_tool import analyze_excel |
|
from tools.search_tool import search_duckduckgo |
|
|
|
class GaiaAgent: |
|
def __init__(self): |
|
token = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
if not token: |
|
raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.") |
|
|
|
|
|
self.llm = pipeline( |
|
"text-generation", |
|
model="google/flan-t5-large", |
|
token=token, |
|
device="cpu", |
|
max_new_tokens=1024, |
|
do_sample=False, |
|
temperature=0.1, |
|
return_full_text=False |
|
) |
|
|
|
|
|
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.""" |
|
|
|
def extract_final_answer(self, text: str) -> str: |
|
"""Extrahera det slutliga svaret från modellens output""" |
|
|
|
final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE) |
|
if final_answer_match: |
|
return final_answer_match.group(1).strip() |
|
|
|
|
|
sentences = text.strip().split('\n') |
|
return sentences[-1].strip() if sentences else text.strip() |
|
|
|
def needs_tool(self, question: str) -> Tuple[str, bool]: |
|
"""Bestäm vilket verktyg som behövs baserat på frågan""" |
|
question_lower = question.lower() |
|
|
|
|
|
if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']): |
|
return 'audio', True |
|
|
|
|
|
if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']): |
|
return 'excel', True |
|
|
|
|
|
if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'website']): |
|
return 'search', True |
|
|
|
|
|
if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count']): |
|
return 'math', True |
|
|
|
return 'llm', False |
|
|
|
def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]: |
|
"""Bearbeta frågan med specifika verktyg""" |
|
trace_log = f"Detected {tool_type} task. Processing...\n" |
|
|
|
try: |
|
if tool_type == 'audio': |
|
|
|
audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE) |
|
if audio_files: |
|
result = transcribe_audio(audio_files[0]) |
|
trace_log += f"Audio transcription: {result}\n" |
|
return result, trace_log |
|
|
|
elif tool_type == 'excel': |
|
|
|
excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE) |
|
if excel_files: |
|
result = analyze_excel(excel_files[0]) |
|
trace_log += f"Excel analysis: {result}\n" |
|
return result, trace_log |
|
|
|
elif tool_type == 'search': |
|
|
|
search_query = question |
|
result = search_duckduckgo(search_query) |
|
trace_log += f"Search results: {result}\n" |
|
return result, trace_log |
|
|
|
except Exception as e: |
|
trace_log += f"Error using {tool_type} tool: {str(e)}\n" |
|
return f"Error: {str(e)}", trace_log |
|
|
|
return "No valid input found for tool", trace_log |
|
|
|
def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]: |
|
"""Använd LLM för reasoning med kontext""" |
|
trace_log = "Using LLM for reasoning...\n" |
|
|
|
|
|
if context: |
|
prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer." |
|
else: |
|
prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer." |
|
|
|
try: |
|
response = self.llm(prompt)[0]["generated_text"] |
|
trace_log += f"LLM response: {response}\n" |
|
return response, trace_log |
|
except Exception as e: |
|
trace_log += f"Error with LLM: {str(e)}\n" |
|
return f"Error: {str(e)}", trace_log |
|
|
|
def __call__(self, question: str) -> Tuple[str, str]: |
|
"""Huvudfunktion som bearbetar frågan""" |
|
total_trace = f"Processing question: {question}\n" |
|
|
|
|
|
tool_type, needs_tool = self.needs_tool(question) |
|
total_trace += f"Tool needed: {tool_type}\n" |
|
|
|
context = "" |
|
if needs_tool and tool_type != 'llm': |
|
|
|
tool_result, tool_trace = self.process_with_tools(question, tool_type) |
|
total_trace += tool_trace |
|
context = tool_result |
|
|
|
|
|
llm_response, llm_trace = self.reason_with_llm(question, context) |
|
total_trace += llm_trace |
|
|
|
|
|
final_answer = self.extract_final_answer(llm_response) |
|
total_trace += f"Final answer extracted: {final_answer}\n" |
|
|
|
return final_answer, total_trace |
|
|
|
def format_for_submission(self, task_id: str, question: str) -> Dict[str, Any]: |
|
"""Formatera svar för GAIA-submission""" |
|
answer, trace = self.__call__(question) |
|
|
|
return { |
|
"task_id": task_id, |
|
"model_answer": answer, |
|
"reasoning_trace": trace |
|
} |
|
|