Freddolin's picture
Update agent.py
af82781 verified
raw
history blame
8.5 kB
import os
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch # För att kontrollera enheter
# Importera ditt nya sökverktyg
from tools.tavily_search import search_tavily
class GaiaAgent:
def __init__(self, model_id: str = "google/gemma-2b-it"):
# Ladda tokenizer och modell manuellt. Detta ger mer kontroll.
try:
print(f"Laddar tokenizer för {model_id}...")
self.tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("HF_TOKEN"))
print(f"Laddar modell för {model_id}...")
# Kontrollera om GPU är tillgänglig
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Använder enhet: {device}")
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Använd bfloat16 för minskat minne
device_map="auto", # Accelerate hanterar detta över CPU/GPU
token=os.getenv("HF_TOKEN")
)
print("Modell laddad framgångsrikt.")
# Skapa en pipeline för textgenerering
self.text_generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
# device=0 if device == "cuda" else -1 # 0 för första GPU, -1 för CPU
)
print("Textgenereringspipeline skapad.")
except Exception as e:
print(f"Fel vid initiering av agent: {e}")
raise RuntimeError(f"Fel vid laddning av modell eller tokenizer: {e}")
# --- THIS IS THE MISSING __CALL__ METHOD ---
def __call__(self, question: str) -> str:
"""
Denna metod gör att en instans av GaiaAgent kan kallas som en funktion.
Den kommer att anropa din process_task metod för att generera svaret.
"""
print(f"Agent received question (first 50 chars): {question[:50]}...")
result = self.process_task(question)
print(f"Agent returning answer: {result[:100]}...") # För att inte fylla loggarna med för långa svar
return result
# --- END OF MISSING METHOD ---
def process_task(self, task_description: str) -> str:
# Instruction to the LLM to perform the task and use tools.
# We need to build a prompt that instructs the model to use tools.
prompt = f"""
You are a helpful and expert AI assistant with access to a search tool.
Your task is to carefully and accurately answer questions by using the search tool when necessary.
Always provide a complete and correct answer based on the information you find.
You must follow a Thought, Tool, Observation, Answer (TTOA) pattern.
**Thought:** First, carefully consider the task. What information do you need to answer the question? Do you need to use a tool?
**Tool:** If you need to search, use the search_tavily tool. The format is: <TOOL_CODE>search_tavily("your search query")</TOOL_CODE>
**Observation:** After a tool call, you will receive an observation (the tool's output). This is factual information.
**Answer:** Once you have gathered all necessary information, provide your final, concise answer directly.
Your available tools:
1. search_tavily(query: str): Searches on Tavily and returns relevant results.
Example Interaction:
Task: What is the capital of France?
Thought: I need to find the capital of France. I should use the search_tavily tool.
Tool: <TOOL_CODE>search_tavily("capital of France")</TOOL_CODE>
Observation: The capital of France is Paris.
Answer: The capital of France is Paris.
Now, let's start.
Task: {task_description}
"""
max_iterations = 3
current_response_history = "" # Ny variabel för att bygga upp historiken
for i in range(max_iterations):
# Lägg till "Thought:" här för att uppmuntra modellen att starta sin tankeprocess
full_prompt = prompt + current_response_history + "\n\nThought:"
print(f"[{i+1}/{max_iterations}] Generating response with prompt length: {len(full_prompt)}")
generated_text = self.text_generator(
full_prompt,
max_new_tokens=1024, # Fortsätt med 1024 eller öka till 2048
num_return_sequences=1,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True,
top_k=50, top_p=0.95,
temperature=0.7
)[0]['generated_text']
# Extrahera endast den nya delen av texten (modellens respons efter den sista "Thought:")
new_content = generated_text[len(full_prompt):].strip()
print(f"DEBUG - Full generated_text: \n---START---\n{generated_text}\n---END---")
print(f"DEBUG - Extracted new_content: '{new_content}'")
# Kontrollera om modellen genererade ett svar som en 'Answer:'
if "Answer:" in new_content:
final_answer = new_content.split("Answer:", 1)[1].strip()
print(f"Final answer from model:\n{final_answer}")
return final_answer # Returnera det slutgiltiga svaret
elif "<TOOL_CODE>" in new_content and "</TOOL_CODE>" in new_content:
# Modellen genererade ett verktygskall.
# Vi vill inte inkludera modellens egna "Observation:" eller "Tool:"-text i historiken
# innan verktyget faktiskt körts. Vi tar bara själva tool_code strängen.
tool_call_start = new_content.find("<TOOL_CODE>")
tool_call_end = new_content.find("</TOOL_CODE>") + len("</TOOL_CODE>")
# Försök att extrahera tanken som ledde till verktygskallet
thought_part = ""
if "Thought:" in new_content[:tool_call_start]:
thought_part = new_content.split("Thought:", 1)[1].split("Tool:", 1)[0].strip()
elif tool_call_start > 0: # Om det finns text före tool code
thought_part = new_content[:tool_call_start].strip()
tool_code_section = new_content[tool_call_start:tool_call_end]
tool_call_str = tool_code_section.replace("<TOOL_CODE>", "").replace("</TOOL_CODE>", "").strip()
print(f"Tool call detected: {tool_call_str}")
try:
if tool_call_str.startswith("search_tavily("):
query = tool_call_str[len("search_tavily("):-1].strip().strip('"').strip("'")
tool_output = search_tavily(query)
print(f"Tool result: {tool_output[:200]}...")
# Lägg till tanken, verktygskallet och det FAKTISKA observationen till historiken
current_response_history += f"\n\nThought: {thought_part}\nTool: {tool_code_section}\nObservation: {tool_output}\n"
else:
tool_output = f"Unknown tool: {tool_call_str}"
print(f"Error: {tool_output}")
current_response_history += f"\n\nThought: {thought_part}\nTool: {tool_code_section}\nObservation: {tool_output}\n"
except Exception as tool_e:
tool_output = f"Error running tool {tool_call_str}: {tool_e}"
print(f"Error: {tool_output}")
current_response_history += f"\n\nThought: {thought_part}\nTool: {tool_code_section}\nObservation: {tool_output}\n"
else:
# Modellen genererade varken ett verktygskall eller ett slutgiltigt svar.
# Lägg till det den faktiskt genererade till historiken så den kan fortsätta sin tanke.
current_response_history += f"\n\nThought: {new_content}\n"
print(f"Model generated non-tool/non-answer content. Appending: {new_content[:100]}...")
# Om max_iterations nås utan slutgiltigt svar
return "Agent could not complete the task within the allowed iterations. Latest relevant content: " + \
(current_response_history[-500:] if current_response_history else "No meaningful content generated.")