|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_core.documents import Document |
|
import shutil |
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
|
|
CHROMA_DB_DIR = "./chroma_db" |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
|
|
|
|
|
|
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR): |
|
print(f"Loading existing ChromaDB from {CHROMA_DB_DIR}") |
|
vector_store = Chroma( |
|
persist_directory=CHROMA_DB_DIR, |
|
embedding_function=embeddings |
|
) |
|
else: |
|
print(f"Creating new ChromaDB at {CHROMA_DB_DIR} and adding dummy documents.") |
|
|
|
if os.path.exists(CHROMA_DB_DIR): |
|
shutil.rmtree(CHROMA_DB_DIR) |
|
os.makedirs(CHROMA_DB_DIR) |
|
|
|
|
|
|
|
documents = [ |
|
Document(page_content="What is the capital of France?", metadata={"source": "internal", "answer": "Paris"}), |
|
Document(page_content="Who wrote Hamlet?", metadata={"source": "internal", "answer": "William Shakespeare"}), |
|
Document(page_content="What is the highest mountain in the world?", metadata={"source": "internal", "answer": "Mount Everest"}), |
|
Document(page_content="When was the internet invented?", metadata={"source": "internal", "answer": "The internet, as we know it, evolved from ARPANET in the late 1960s and early 1970s. The TCP/IP protocol, which forms the basis of the internet, was standardized in 1978."}), |
|
Document(page_content="What is the square root of 64?", metadata={"source": "internal", "answer": "8"}), |
|
Document(page_content="Who is the current president of the United States?", metadata={"source": "internal", "answer": "Joe Biden"}), |
|
Document(page_content="What is the chemical symbol for water?", metadata={"source": "internal", "answer": "H2O"}), |
|
Document(page_content="What is the largest ocean on Earth?", metadata={"source": "internal", "answer": "Pacific Ocean"}), |
|
Document(page_content="What is the speed of light?", metadata={"source": "internal", "answer": "Approximately 299,792,458 meters per second in a vacuum."}), |
|
Document(page_content="What is the capital of Sweden?", metadata={"source": "internal", "answer": "Stockholm"}), |
|
] |
|
|
|
vector_store = Chroma.from_documents( |
|
documents=documents, |
|
embedding=embeddings, |
|
persist_directory=CHROMA_DB_DIR |
|
) |
|
vector_store.persist() |
|
print("ChromaDB initialized and persisted with dummy documents.") |
|
|
|
|
|
retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question_Search", |
|
description="A tool to retrieve similar questions from a vector store and their answers.", |
|
) |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
retriever_tool, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "google"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
|
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
from langchain_core.messages import AIMessage |
|
|
|
def retriever(state: MessagesState): |
|
query = state["messages"][-1].content |
|
|
|
similar_docs = retriever_tool.invoke(query) |
|
|
|
|
|
|
|
if similar_docs: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
similar_doc = vector_store.similarity_search(query, k=1)[0] |
|
|
|
|
|
if "answer" in similar_doc.metadata: |
|
answer = similar_doc.metadata["answer"] |
|
elif "Final answer :" in similar_doc.page_content: |
|
answer = similar_doc.page_content.split("Final answer :")[-1].strip() |
|
else: |
|
answer = similar_doc.page_content.strip() |
|
|
|
return {"messages": [AIMessage(content=answer)]} |
|
else: |
|
|
|
return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
|
|
|
|
builder.set_entry_point("retriever") |
|
builder.set_finish_point("retriever") |
|
|
|
|
|
return builder.compile() |
|
|
|
|