Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,63 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect # Behåll denna, mallen använder den kanske internt
|
5 |
import pandas as pd
|
|
|
|
|
6 |
|
7 |
-
# Importera din GaiaAgent från den separata agent.py filen
|
8 |
-
from agent import GaiaAgent
|
9 |
|
|
|
|
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
|
13 |
-
# ---
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"""
|
16 |
-
Fetches all questions, runs the
|
17 |
and displays the results.
|
18 |
"""
|
19 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
20 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
21 |
if profile:
|
22 |
username= f"{profile.username}"
|
23 |
print(f"User logged in: {username}")
|
24 |
else:
|
25 |
print("User not logged in.")
|
26 |
return "Please Login to Hugging Face with the button.", None
|
|
|
27 |
api_url = DEFAULT_API_URL
|
28 |
questions_url = f"{api_url}/questions"
|
29 |
submit_url = f"{api_url}/submit"
|
30 |
|
31 |
-
# 1. Instantiate Agent (
|
32 |
try:
|
33 |
-
|
34 |
-
agent = GaiaAgent()
|
35 |
except Exception as e:
|
36 |
print(f"Error instantiating agent: {e}")
|
37 |
return f"Error initializing agent: {e}", None
|
38 |
-
|
39 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( useful for others so please keep it public)
|
40 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
41 |
print(agent_code)
|
42 |
|
@@ -72,7 +93,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
72 |
print(f"Skipping item with missing task_id or question: {item}")
|
73 |
continue
|
74 |
try:
|
75 |
-
# Anropa din GaiaAgent med frågan
|
76 |
submitted_answer = agent(question_text)
|
77 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
78 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
@@ -84,7 +104,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
84 |
print("Agent did not produce any answers to submit.")
|
85 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
86 |
|
87 |
-
# 4. Prepare Submission
|
88 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
89 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
90 |
print(status_update)
|
@@ -132,25 +152,32 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
132 |
results_df = pd.DataFrame(results_log)
|
133 |
return status_message, results_df
|
134 |
|
|
|
135 |
# --- Build Gradio Interface using Blocks ---
|
136 |
with gr.Blocks() as demo:
|
137 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
138 |
gr.Markdown(
|
139 |
"""
|
140 |
**Instructions:**
|
|
|
141 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
142 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
143 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
144 |
---
|
145 |
**Disclaimers:**
|
146 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
147 |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
148 |
"""
|
149 |
)
|
|
|
150 |
gr.LoginButton()
|
|
|
151 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
152 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
153 |
-
|
|
|
154 |
|
155 |
run_button.click(
|
156 |
fn=run_and_submit_all,
|
@@ -159,20 +186,25 @@ with gr.Blocks() as demo:
|
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
162 |
space_host_startup = os.getenv("SPACE_HOST")
|
163 |
-
space_id_startup = os.getenv("SPACE_ID")
|
|
|
164 |
if space_host_startup:
|
165 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
166 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
167 |
else:
|
168 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
169 |
-
|
|
|
170 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
171 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
172 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
173 |
else:
|
174 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
175 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
|
|
176 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
177 |
demo.launch(debug=True, share=False)
|
178 |
|
|
|
1 |
+
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
+
import inspect
|
4 |
import gradio as gr
|
5 |
import requests
|
|
|
6 |
import pandas as pd
|
7 |
+
from langchain_core.messages import HumanMessage
|
8 |
+
from agent import build_graph
|
9 |
|
|
|
|
|
10 |
|
11 |
+
|
12 |
+
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
+
# --- Basic Agent Definition ---
|
17 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
+
|
19 |
+
|
20 |
+
class BasicAgent:
|
21 |
+
"""A langgraph agent."""
|
22 |
+
def __init__(self):
|
23 |
+
print("BasicAgent initialized.")
|
24 |
+
self.graph = build_graph()
|
25 |
+
|
26 |
+
def __call__(self, question: str) -> str:
|
27 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
28 |
+
messages = [HumanMessage(content=question)]
|
29 |
+
result = self.graph.invoke({"messages": messages})
|
30 |
+
answer = result['messages'][-1].content
|
31 |
+
return answer # kein [14:] mehr nötig!
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
36 |
"""
|
37 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
38 |
and displays the results.
|
39 |
"""
|
40 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
41 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
42 |
+
|
43 |
if profile:
|
44 |
username= f"{profile.username}"
|
45 |
print(f"User logged in: {username}")
|
46 |
else:
|
47 |
print("User not logged in.")
|
48 |
return "Please Login to Hugging Face with the button.", None
|
49 |
+
|
50 |
api_url = DEFAULT_API_URL
|
51 |
questions_url = f"{api_url}/questions"
|
52 |
submit_url = f"{api_url}/submit"
|
53 |
|
54 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
55 |
try:
|
56 |
+
agent = BasicAgent()
|
|
|
57 |
except Exception as e:
|
58 |
print(f"Error instantiating agent: {e}")
|
59 |
return f"Error initializing agent: {e}", None
|
60 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
|
|
61 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
62 |
print(agent_code)
|
63 |
|
|
|
93 |
print(f"Skipping item with missing task_id or question: {item}")
|
94 |
continue
|
95 |
try:
|
|
|
96 |
submitted_answer = agent(question_text)
|
97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
104 |
print("Agent did not produce any answers to submit.")
|
105 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
106 |
|
107 |
+
# 4. Prepare Submission
|
108 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
109 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
110 |
print(status_update)
|
|
|
152 |
results_df = pd.DataFrame(results_log)
|
153 |
return status_message, results_df
|
154 |
|
155 |
+
|
156 |
# --- Build Gradio Interface using Blocks ---
|
157 |
with gr.Blocks() as demo:
|
158 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
159 |
gr.Markdown(
|
160 |
"""
|
161 |
**Instructions:**
|
162 |
+
|
163 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
164 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
165 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
166 |
+
|
167 |
---
|
168 |
**Disclaimers:**
|
169 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
170 |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
171 |
"""
|
172 |
)
|
173 |
+
|
174 |
gr.LoginButton()
|
175 |
+
|
176 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
177 |
+
|
178 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
179 |
+
# Removed max_rows=10 from DataFrame constructor
|
180 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
181 |
|
182 |
run_button.click(
|
183 |
fn=run_and_submit_all,
|
|
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
189 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
190 |
space_host_startup = os.getenv("SPACE_HOST")
|
191 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
192 |
+
|
193 |
if space_host_startup:
|
194 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
195 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
196 |
else:
|
197 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
198 |
+
|
199 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
200 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
201 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
202 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
203 |
else:
|
204 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
205 |
+
|
206 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
207 |
+
|
208 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
209 |
demo.launch(debug=True, share=False)
|
210 |
|