Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,40 +1,46 @@
|
|
|
|
1 |
from transformers import pipeline
|
2 |
from tools.asr_tool import transcribe_audio
|
3 |
from tools.excel_tool import analyze_excel
|
4 |
from tools.search_tool import search_duckduckgo
|
5 |
-
import mimetypes
|
6 |
|
7 |
class GaiaAgent:
|
8 |
def __init__(self):
|
9 |
print("Loading model...")
|
10 |
-
self.
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
answer = self.qa_pipeline(text, max_new_tokens=64)[0]['generated_text']
|
21 |
-
return answer.strip(), trace
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
if any(keyword in question.lower() for keyword in ["wikipedia", "video", "youtube", "article"]):
|
32 |
-
trace += "Performing DuckDuckGo search...\n"
|
33 |
-
summary = search_duckduckgo(question)
|
34 |
-
trace += f"Summary from search: {summary}\n"
|
35 |
-
answer = self.qa_pipeline(summary + "\n" + question, max_new_tokens=64)[0]['generated_text']
|
36 |
-
return answer.strip(), trace
|
37 |
|
38 |
-
|
39 |
-
answer = self.qa_pipeline(question, max_new_tokens=64)[0]['generated_text']
|
40 |
-
return answer.strip(), trace
|
|
|
1 |
+
import mimetypes
|
2 |
from transformers import pipeline
|
3 |
from tools.asr_tool import transcribe_audio
|
4 |
from tools.excel_tool import analyze_excel
|
5 |
from tools.search_tool import search_duckduckgo
|
|
|
6 |
|
7 |
class GaiaAgent:
|
8 |
def __init__(self):
|
9 |
print("Loading model...")
|
10 |
+
self.llm = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2", max_new_tokens=512, device="cpu")
|
11 |
+
|
12 |
+
def __call__(self, question: str, files: list = None):
|
13 |
+
trace = []
|
14 |
+
context = ""
|
15 |
|
16 |
+
if files:
|
17 |
+
for file in files:
|
18 |
+
mime, _ = mimetypes.guess_type(file.name)
|
19 |
+
if mime and mime.startswith("audio"):
|
20 |
+
transcription = transcribe_audio(file.name)
|
21 |
+
trace.append(f"Transcribed audio: {transcription}")
|
22 |
+
context += f"\nTranscription: {transcription}"
|
23 |
+
elif mime and ("spreadsheet" in mime or file.name.endswith(".xlsx")):
|
24 |
+
result = analyze_excel(file.name)
|
25 |
+
trace.append(f"Excel analysis: {result}")
|
26 |
+
context += f"\nSpreadsheet data: {result}"
|
27 |
|
28 |
+
if "http" in question or "Wikipedia" in question or "YouTube" in question or "search" in question.lower():
|
29 |
+
trace.append("Performing DuckDuckGo search...")
|
30 |
+
search_result = search_duckduckgo(question)
|
31 |
+
trace.append(f"Summary from search: {search_result}")
|
32 |
+
context += f"\nSearch Result: {search_result}"
|
|
|
|
|
33 |
|
34 |
+
# Include the original question
|
35 |
+
prompt = f"""
|
36 |
+
Answer the question based on the context below.
|
37 |
+
Context: {context}
|
38 |
+
Question: {question}
|
39 |
+
Answer:
|
40 |
+
"""
|
41 |
+
response = self.llm(prompt)[0]['generated_text'].split("Answer:")[-1].strip()
|
42 |
+
trace.append(response)
|
43 |
|
44 |
+
return response, "\n".join(trace)
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
|
|
|
|