Freddolin commited on
Commit
15b9880
·
verified ·
1 Parent(s): 636c045

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +127 -28
agent.py CHANGED
@@ -1,4 +1,7 @@
1
  import os
 
 
 
2
  from transformers import pipeline
3
  from tools.asr_tool import transcribe_audio
4
  from tools.excel_tool import analyze_excel
@@ -9,43 +12,139 @@ class GaiaAgent:
9
  token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
10
  if not token:
11
  raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
12
-
 
13
  self.llm = pipeline(
14
  "text-generation",
15
  model="mistralai/Mistral-7B-Instruct-v0.2",
16
  use_auth_token=token,
17
  device="cpu",
18
- max_new_tokens=512,
19
- do_sample=False
 
 
20
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- def __call__(self, question: str):
23
- trace_log = ""
24
- # Search tool
25
- if "http" in question or "www." in question:
26
- trace_log += "Detected URL or web reference. Performing search...\n"
27
- result = search_duckduckgo(question)
28
- trace_log += f"Search result: {result}\n"
29
- return result, trace_log
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
- # Audio tool
32
- if question.lower().endswith(".mp3") or question.lower().endswith(".wav"):
33
- trace_log += "Detected audio file. Performing transcription...\n"
34
- result = transcribe_audio(question)
35
- trace_log += f"Transcription result: {result}\n"
36
- return result, trace_log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- # Excel tool
39
- if question.lower().endswith(".xlsx") or question.lower().endswith(".xls"):
40
- trace_log += "Detected Excel file. Performing analysis...\n"
41
- result = analyze_excel(question)
42
- trace_log += f"Excel analysis result: {result}\n"
43
- return result, trace_log
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- # LLM fallback
46
- trace_log += "General question. Using local model...\n"
47
- response = self.llm(question)[0]["generated_text"]
48
- trace_log += f"LLM response: {response}\n"
49
- return response.strip(), trace_log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
 
 
 
 
 
 
 
 
 
51
 
 
1
  import os
2
+ import json
3
+ import re
4
+ from typing import Tuple, Dict, Any
5
  from transformers import pipeline
6
  from tools.asr_tool import transcribe_audio
7
  from tools.excel_tool import analyze_excel
 
12
  token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
13
  if not token:
14
  raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
15
+
16
+ # Använd en mer kapabel modell för bättre reasoning
17
  self.llm = pipeline(
18
  "text-generation",
19
  model="mistralai/Mistral-7B-Instruct-v0.2",
20
  use_auth_token=token,
21
  device="cpu",
22
+ max_new_tokens=1024, # Öka för mer detaljerade svar
23
+ do_sample=False,
24
+ temperature=0.1,
25
+ return_full_text=False
26
  )
27
+
28
+ # System prompt enligt GAIA:s instruktioner
29
+ self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
30
+
31
+ def extract_final_answer(self, text: str) -> str:
32
+ """Extrahera det slutliga svaret från modellens output"""
33
+ # Leta efter FINAL ANSWER: mönster
34
+ final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
35
+ if final_answer_match:
36
+ return final_answer_match.group(1).strip()
37
+
38
+ # Fallback: ta sista meningen om inget FINAL ANSWER hittas
39
+ sentences = text.strip().split('\n')
40
+ return sentences[-1].strip() if sentences else text.strip()
41
 
42
+ def needs_tool(self, question: str) -> Tuple[str, bool]:
43
+ """Bestäm vilket verktyg som behövs baserat på frågan"""
44
+ question_lower = question.lower()
45
+
46
+ # Kontrollera för audio-filer
47
+ if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
48
+ return 'audio', True
49
+
50
+ # Kontrollera för Excel-filer
51
+ if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
52
+ return 'excel', True
53
+
54
+ # Kontrollera för web-sökning
55
+ if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'website']):
56
+ return 'search', True
57
+
58
+ # Kontrollera för matematiska beräkningar
59
+ if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count']):
60
+ return 'math', True
61
+
62
+ return 'llm', False
63
 
64
+ def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
65
+ """Bearbeta frågan med specifika verktyg"""
66
+ trace_log = f"Detected {tool_type} task. Processing...\n"
67
+
68
+ try:
69
+ if tool_type == 'audio':
70
+ # Extrahera filnamn från frågan
71
+ audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
72
+ if audio_files:
73
+ result = transcribe_audio(audio_files[0])
74
+ trace_log += f"Audio transcription: {result}\n"
75
+ return result, trace_log
76
+
77
+ elif tool_type == 'excel':
78
+ # Extrahera filnamn från frågan
79
+ excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
80
+ if excel_files:
81
+ result = analyze_excel(excel_files[0])
82
+ trace_log += f"Excel analysis: {result}\n"
83
+ return result, trace_log
84
+
85
+ elif tool_type == 'search':
86
+ # Extrahera sökfråga
87
+ search_query = question
88
+ result = search_duckduckgo(search_query)
89
+ trace_log += f"Search results: {result}\n"
90
+ return result, trace_log
91
+
92
+ except Exception as e:
93
+ trace_log += f"Error using {tool_type} tool: {str(e)}\n"
94
+ return f"Error: {str(e)}", trace_log
95
+
96
+ return "No valid input found for tool", trace_log
97
 
98
+ def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
99
+ """Använd LLM för reasoning med kontext"""
100
+ trace_log = "Using LLM for reasoning...\n"
101
+
102
+ # Bygg prompt med system instruktioner
103
+ if context:
104
+ prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
105
+ else:
106
+ prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
107
+
108
+ try:
109
+ response = self.llm(prompt)[0]["generated_text"]
110
+ trace_log += f"LLM response: {response}\n"
111
+ return response, trace_log
112
+ except Exception as e:
113
+ trace_log += f"Error with LLM: {str(e)}\n"
114
+ return f"Error: {str(e)}", trace_log
115
 
116
+ def __call__(self, question: str) -> Tuple[str, str]:
117
+ """Huvudfunktion som bearbetar frågan"""
118
+ total_trace = f"Processing question: {question}\n"
119
+
120
+ # Bestäm vilka verktyg som behövs
121
+ tool_type, needs_tool = self.needs_tool(question)
122
+ total_trace += f"Tool needed: {tool_type}\n"
123
+
124
+ context = ""
125
+ if needs_tool and tool_type != 'llm':
126
+ # Använd verktyg för att samla kontext
127
+ tool_result, tool_trace = self.process_with_tools(question, tool_type)
128
+ total_trace += tool_trace
129
+ context = tool_result
130
+
131
+ # Använd LLM för reasoning
132
+ llm_response, llm_trace = self.reason_with_llm(question, context)
133
+ total_trace += llm_trace
134
+
135
+ # Extrahera slutligt svar
136
+ final_answer = self.extract_final_answer(llm_response)
137
+ total_trace += f"Final answer extracted: {final_answer}\n"
138
+
139
+ return final_answer, total_trace
140
 
141
+ def format_for_submission(self, task_id: str, question: str) -> Dict[str, Any]:
142
+ """Formatera svar för GAIA-submission"""
143
+ answer, trace = self.__call__(question)
144
+
145
+ return {
146
+ "task_id": task_id,
147
+ "model_answer": answer,
148
+ "reasoning_trace": trace
149
+ }
150