Update agent.py
Browse files
agent.py
CHANGED
@@ -1,10 +1,26 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
2 |
import torch
|
3 |
|
4 |
SYSTEM_PROMPT = """
|
5 |
-
You are a general AI assistant. I will ask you a question. Think step by step to find the best possible answer.
|
|
|
|
|
6 |
"""
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
class GaiaAgent:
|
9 |
def __init__(self, model_id="google/flan-t5-base"):
|
10 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
@@ -14,18 +30,31 @@ class GaiaAgent:
|
|
14 |
|
15 |
def __call__(self, question: str) -> tuple[str, str]:
|
16 |
try:
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device)
|
19 |
outputs = self.model.generate(
|
20 |
**inputs,
|
21 |
max_new_tokens=128,
|
22 |
do_sample=False,
|
23 |
-
temperature=0.0,
|
24 |
pad_token_id=self.tokenizer.pad_token_id
|
25 |
)
|
26 |
output_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
final = output_text.strip()
|
28 |
-
return final,
|
|
|
29 |
except Exception as e:
|
30 |
return "ERROR", f"Agent failed: {e}"
|
31 |
|
|
|
1 |
+
# --- agent.py ---
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from duckduckgo_search import DDGS
|
4 |
import torch
|
5 |
|
6 |
SYSTEM_PROMPT = """
|
7 |
+
You are a general AI assistant. I will ask you a question. Think step by step to find the best possible answer.
|
8 |
+
Then return only the answer without any explanation or formatting.
|
9 |
+
Do not say 'Final answer' or anything else. Just output the raw answer string.
|
10 |
"""
|
11 |
|
12 |
+
def web_search(query: str, max_results: int = 3) -> list[str]:
|
13 |
+
results = []
|
14 |
+
try:
|
15 |
+
with DDGS() as ddgs:
|
16 |
+
for r in ddgs.text(query, max_results=max_results):
|
17 |
+
snippet = f"{r['title']}: {r['body']} (URL: {r['href']})"
|
18 |
+
results.append(snippet)
|
19 |
+
except Exception as e:
|
20 |
+
results.append(f"[Web search error: {e}]")
|
21 |
+
return results
|
22 |
+
|
23 |
+
|
24 |
class GaiaAgent:
|
25 |
def __init__(self, model_id="google/flan-t5-base"):
|
26 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
30 |
|
31 |
def __call__(self, question: str) -> tuple[str, str]:
|
32 |
try:
|
33 |
+
# Heuristik: gör webbsök om frågan kräver externa fakta
|
34 |
+
search_required = any(keyword in question.lower() for keyword in [
|
35 |
+
"wikipedia", "who", "when", "where", "youtube", "mp3", "video", "article", "name", "code", "city", "award", "nasa"
|
36 |
+
])
|
37 |
+
|
38 |
+
if search_required:
|
39 |
+
search_results = web_search(question)
|
40 |
+
context = "\n".join(search_results)
|
41 |
+
prompt = f"{SYSTEM_PROMPT}\n\nSearch context:\n{context}\n\nQuestion: {question}"
|
42 |
+
trace = f"Search used:\n{context}"
|
43 |
+
else:
|
44 |
+
prompt = f"{SYSTEM_PROMPT}\n\n{question}"
|
45 |
+
trace = "Search not used."
|
46 |
+
|
47 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device)
|
48 |
outputs = self.model.generate(
|
49 |
**inputs,
|
50 |
max_new_tokens=128,
|
51 |
do_sample=False,
|
|
|
52 |
pad_token_id=self.tokenizer.pad_token_id
|
53 |
)
|
54 |
output_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
final = output_text.strip()
|
56 |
+
return final, trace
|
57 |
+
|
58 |
except Exception as e:
|
59 |
return "ERROR", f"Agent failed: {e}"
|
60 |
|