Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -51,91 +51,79 @@ class GaiaAgent:
|
|
51 |
# --- END OF MISSING METHOD ---
|
52 |
|
53 |
def process_task(self, task_description: str) -> str:
|
54 |
-
#
|
55 |
-
#
|
56 |
|
57 |
-
# Instruktioner till modellen för att svara och använda verktyg
|
58 |
prompt = f"""
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
1. search_tavily(query: str):
|
|
|
65 |
|
66 |
-
|
67 |
<TOOL_CODE>
|
68 |
-
|
69 |
</TOOL_CODE>
|
70 |
-
|
71 |
-
|
72 |
-
För att söka efter information om Mars:
|
73 |
<TOOL_CODE>
|
74 |
-
search_tavily("
|
75 |
</TOOL_CODE>
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
80 |
"""
|
81 |
|
82 |
-
max_iterations = 3
|
83 |
current_response = ""
|
84 |
|
85 |
for i in range(max_iterations):
|
86 |
-
|
87 |
-
full_prompt = prompt + current_response + "\n\nVad är nästa steg eller ditt slutgiltiga svar?"
|
88 |
|
89 |
-
print(f"[{i+1}/{max_iterations}]
|
90 |
|
91 |
-
# Generera svar från modellen
|
92 |
-
# max_new_tokens är viktig för att styra svarets längd
|
93 |
generated_text = self.text_generator(
|
94 |
full_prompt,
|
95 |
-
max_new_tokens=1024, #
|
96 |
num_return_sequences=1,
|
97 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
98 |
-
do_sample=True,
|
99 |
-
top_k=50, top_p=0.95,
|
100 |
-
temperature=0.8 #
|
101 |
)[0]['generated_text']
|
102 |
|
103 |
-
# Extrahera endast den nya delen av texten (modellen genererar hela prompten + nytt svar)
|
104 |
new_content = generated_text[len(full_prompt):].strip()
|
105 |
-
print(f"
|
|
|
106 |
|
107 |
-
# Kontrollera om modellen vill använda ett verktyg
|
108 |
if "<TOOL_CODE>" in new_content and "</TOOL_CODE>" in new_content:
|
109 |
start_index = new_content.find("<TOOL_CODE>") + len("<TOOL_CODE>")
|
110 |
end_index = new_content.find("</TOOL_CODE>")
|
111 |
tool_call_str = new_content[start_index:end_index].strip()
|
112 |
|
113 |
-
print(f"
|
114 |
|
115 |
try:
|
116 |
-
# EVAL är farligt i verkliga applikationer, men för GAIA och detta specifika verktyg är det OK.
|
117 |
-
# Säkerställ att endast godkända funktioner kan kallas.
|
118 |
if tool_call_str.startswith("search_tavily("):
|
119 |
-
# Extrahera argumenten till funktionen
|
120 |
-
# En mer robust parser skulle behövas för mer komplexa verktyg
|
121 |
query = tool_call_str[len("search_tavily("):-1].strip().strip('"').strip("'")
|
122 |
tool_output = search_tavily(query)
|
123 |
-
print(f"
|
124 |
-
current_response += f"\n\
|
125 |
else:
|
126 |
-
tool_output = f"
|
127 |
-
print(f"
|
128 |
current_response += f"\n\n{tool_output}\n"
|
129 |
except Exception as tool_e:
|
130 |
-
tool_output = f"
|
131 |
-
print(f"
|
132 |
current_response += f"\n\n{tool_output}\n"
|
133 |
else:
|
134 |
-
# Modellen har genererat ett svar utan att kalla verktyg
|
135 |
final_answer = new_content
|
136 |
-
print(f"
|
137 |
return final_answer.strip()
|
138 |
|
139 |
-
|
140 |
-
return "Agenten kunde inte slutföra uppgiften inom tillåtet antal iterationer. Senaste svar: " + new_content.strip()
|
141 |
-
|
|
|
51 |
# --- END OF MISSING METHOD ---
|
52 |
|
53 |
def process_task(self, task_description: str) -> str:
|
54 |
+
# Instruction to the LLM to perform the task and use tools.
|
55 |
+
# We need to build a prompt that instructs the model to use tools.
|
56 |
|
|
|
57 |
prompt = f"""
|
58 |
+
You are a helpful and expert AI assistant with access to a search tool.
|
59 |
+
Your task is to carefully and accurately answer questions by using the search tool when necessary.
|
60 |
+
Always provide a complete and correct answer based on the information you find.
|
61 |
|
62 |
+
Your available tools:
|
63 |
+
1. search_tavily(query: str): Searches on Tavily and returns relevant results.
|
64 |
+
Use this tool to find information on the internet that you don't know or need to verify.
|
65 |
|
66 |
+
To use a tool, write it in the following exact format:
|
67 |
<TOOL_CODE>
|
68 |
+
tool_name("your search query")
|
69 |
</TOOL_CODE>
|
70 |
+
Example:
|
71 |
+
If you need to know the capital of France:
|
|
|
72 |
<TOOL_CODE>
|
73 |
+
search_tavily("capital of France")
|
74 |
</TOOL_CODE>
|
75 |
|
76 |
+
When you have found all the necessary information and are ready to answer the task, provide your final answer.
|
77 |
|
78 |
+
Task: {task_description}
|
79 |
"""
|
80 |
|
81 |
+
max_iterations = 3
|
82 |
current_response = ""
|
83 |
|
84 |
for i in range(max_iterations):
|
85 |
+
full_prompt = prompt + current_response + "\n\nWhat is the next step or your final answer?"
|
|
|
86 |
|
87 |
+
print(f"[{i+1}/{max_iterations}] Generating response with prompt length: {len(full_prompt)}")
|
88 |
|
|
|
|
|
89 |
generated_text = self.text_generator(
|
90 |
full_prompt,
|
91 |
+
max_new_tokens=1024, # Behold 1024 eller öka om behövs
|
92 |
num_return_sequences=1,
|
93 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
94 |
+
do_sample=True,
|
95 |
+
top_k=50, top_p=0.95,
|
96 |
+
temperature=0.8 # Behold 0.8 eller justera vid behov
|
97 |
)[0]['generated_text']
|
98 |
|
|
|
99 |
new_content = generated_text[len(full_prompt):].strip()
|
100 |
+
print(f"DEBUG - Full generated_text: \n---START---\n{generated_text}\n---END---")
|
101 |
+
print(f"DEBUG - Extracted new_content: '{new_content}'")
|
102 |
|
|
|
103 |
if "<TOOL_CODE>" in new_content and "</TOOL_CODE>" in new_content:
|
104 |
start_index = new_content.find("<TOOL_CODE>") + len("<TOOL_CODE>")
|
105 |
end_index = new_content.find("</TOOL_CODE>")
|
106 |
tool_call_str = new_content[start_index:end_index].strip()
|
107 |
|
108 |
+
print(f"Tool call detected: {tool_call_str}")
|
109 |
|
110 |
try:
|
|
|
|
|
111 |
if tool_call_str.startswith("search_tavily("):
|
|
|
|
|
112 |
query = tool_call_str[len("search_tavily("):-1].strip().strip('"').strip("'")
|
113 |
tool_output = search_tavily(query)
|
114 |
+
print(f"Tool result: {tool_output[:200]}...")
|
115 |
+
current_response += f"\n\nTool Result from {tool_call_str}:\n{tool_output}\n"
|
116 |
else:
|
117 |
+
tool_output = f"Unknown tool: {tool_call_str}"
|
118 |
+
print(f"Error: {tool_output}")
|
119 |
current_response += f"\n\n{tool_output}\n"
|
120 |
except Exception as tool_e:
|
121 |
+
tool_output = f"Error running tool {tool_call_str}: {tool_e}"
|
122 |
+
print(f"Error: {tool_output}")
|
123 |
current_response += f"\n\n{tool_output}\n"
|
124 |
else:
|
|
|
125 |
final_answer = new_content
|
126 |
+
print(f"Final answer from model:\n{final_answer}")
|
127 |
return final_answer.strip()
|
128 |
|
129 |
+
return "Agent could not complete the task within the allowed iterations. Latest response: " + new_content.strip()
|
|
|
|