Freddolin commited on
Commit
bf58062
·
verified ·
1 Parent(s): e844e96

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +60 -56
agent.py CHANGED
@@ -2,110 +2,128 @@ import os
2
  import json
3
  import re
4
  from typing import Tuple, Dict, Any
5
- from transformers import pipeline
 
6
  from tools.asr_tool import transcribe_audio
7
  from tools.excel_tool import analyze_excel
8
  from tools.search_tool import search_duckduckgo
 
9
 
10
  class GaiaAgent:
11
  def __init__(self):
12
  token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
13
  if not token:
14
  raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
15
-
16
- # Använd en mer kapabel modell för bättre reasoning
 
 
 
 
 
17
  self.llm = pipeline(
18
  "text2text-generation",
19
- model="google/flan-t5-large", # <-- Bara denna rad
20
- token=token,
21
- device="cpu",
22
  max_new_tokens=256,
23
- do_sample=False,
24
- temperature=0.1,
25
  )
26
-
27
- # System prompt enligt GAIA:s instruktioner
28
  self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
29
 
30
  def extract_final_answer(self, text: str) -> str:
31
  """Extrahera det slutliga svaret från modellens output"""
32
- # Leta efter FINAL ANSWER: mönster
33
  final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
34
  if final_answer_match:
35
  return final_answer_match.group(1).strip()
36
-
37
- # Fallback: ta sista meningen om inget FINAL ANSWER hittas
38
  sentences = text.strip().split('\n')
39
  return sentences[-1].strip() if sentences else text.strip()
40
 
41
  def needs_tool(self, question: str) -> Tuple[str, bool]:
42
  """Bestäm vilket verktyg som behövs baserat på frågan"""
43
  question_lower = question.lower()
44
-
45
- # Kontrollera för audio-filer
46
  if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
47
  return 'audio', True
48
-
49
- # Kontrollera för Excel-filer
50
  if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
51
  return 'excel', True
52
-
53
- # Kontrollera för web-sökning
54
- if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'wikipedia', 'albums', 'discography', 'published' 'website']):
55
  return 'search', True
56
-
57
- # Kontrollera för matematiska beräkningar
58
- if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count']):
59
  return 'math', True
60
-
61
  return 'llm', False
62
 
63
  def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
64
  """Bearbeta frågan med specifika verktyg"""
65
  trace_log = f"Detected {tool_type} task. Processing...\n"
66
-
67
  try:
68
  if tool_type == 'audio':
69
- # Extrahera filnamn från frågan
70
  audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
71
  if audio_files:
72
  result = transcribe_audio(audio_files[0])
73
  trace_log += f"Audio transcription: {result}\n"
74
  return result, trace_log
75
-
 
 
76
  elif tool_type == 'excel':
77
- # Extrahera filnamn från frågan
78
  excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
79
  if excel_files:
80
  result = analyze_excel(excel_files[0])
81
  trace_log += f"Excel analysis: {result}\n"
82
  return result, trace_log
83
-
 
 
84
  elif tool_type == 'search':
85
- # Extrahera sökfråga
86
- search_query = question
87
  result = search_duckduckgo(search_query)
88
  trace_log += f"Search results: {result}\n"
89
  return result, trace_log
90
-
 
 
 
 
 
 
 
 
 
 
91
  except Exception as e:
92
  trace_log += f"Error using {tool_type} tool: {str(e)}\n"
93
  return f"Error: {str(e)}", trace_log
94
-
95
  return "No valid input found for tool", trace_log
96
 
97
  def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
98
  """Använd LLM för reasoning med kontext"""
99
  trace_log = "Using LLM for reasoning...\n"
100
-
101
- # Bygg prompt med system instruktioner
102
  if context:
103
  prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
104
  else:
105
  prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
106
-
 
 
 
107
  try:
108
- response = self.llm(prompt)[0]["generated_text"]
 
 
 
 
 
 
 
 
 
109
  trace_log += f"LLM response: {response}\n"
110
  return response, trace_log
111
  except Exception as e:
@@ -115,35 +133,21 @@ class GaiaAgent:
115
  def __call__(self, question: str) -> Tuple[str, str]:
116
  """Huvudfunktion som bearbetar frågan"""
117
  total_trace = f"Processing question: {question}\n"
118
-
119
- # Bestäm vilka verktyg som behövs
120
  tool_type, needs_tool = self.needs_tool(question)
121
  total_trace += f"Tool needed: {tool_type}\n"
122
-
123
  context = ""
124
  if needs_tool and tool_type != 'llm':
125
- # Använd verktyg för att samla kontext
126
  tool_result, tool_trace = self.process_with_tools(question, tool_type)
127
  total_trace += tool_trace
128
  context = tool_result
129
-
130
- # Använd LLM för reasoning
131
  llm_response, llm_trace = self.reason_with_llm(question, context)
132
  total_trace += llm_trace
133
-
134
- # Extrahera slutligt svar
135
  final_answer = self.extract_final_answer(llm_response)
136
  total_trace += f"Final answer extracted: {final_answer}\n"
137
-
138
- return final_answer, total_trace
139
 
140
- def format_for_submission(self, task_id: str, question: str) -> Dict[str, Any]:
141
- """Formatera svar för GAIA-submission"""
142
- answer, trace = self.__call__(question)
143
-
144
- return {
145
- "task_id": task_id,
146
- "model_answer": answer,
147
- "reasoning_trace": trace
148
- }
149
 
 
2
  import json
3
  import re
4
  from typing import Tuple, Dict, Any
5
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM # Import AutoTokenizer and AutoModelForSeq2SeqLM
6
+
7
  from tools.asr_tool import transcribe_audio
8
  from tools.excel_tool import analyze_excel
9
  from tools.search_tool import search_duckduckgo
10
+ from tools.math_tool import calculate_math # Make sure to import your math tool
11
 
12
  class GaiaAgent:
13
  def __init__(self):
14
  token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
15
  if not token:
16
  raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
17
+
18
+ # Specify the model and load tokenizer and model separately for better control
19
+ model_name = "google/flan-t5-large"
20
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
21
+ self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=token)
22
+
23
+ # Use the pipeline with the loaded model and tokenizer
24
  self.llm = pipeline(
25
  "text2text-generation",
26
+ model=self.model,
27
+ tokenizer=self.tokenizer,
28
+ device="cpu", # Consider "cuda" if you have a GPU
29
  max_new_tokens=256,
30
+ do_sample=False, # Set to True if you want to use temperature and top_p/k
31
+ # temperature=0.1, # Removed, as it's not a valid pipeline initialization flag here
32
  )
33
+
 
34
  self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
35
 
36
  def extract_final_answer(self, text: str) -> str:
37
  """Extrahera det slutliga svaret från modellens output"""
 
38
  final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
39
  if final_answer_match:
40
  return final_answer_match.group(1).strip()
 
 
41
  sentences = text.strip().split('\n')
42
  return sentences[-1].strip() if sentences else text.strip()
43
 
44
  def needs_tool(self, question: str) -> Tuple[str, bool]:
45
  """Bestäm vilket verktyg som behövs baserat på frågan"""
46
  question_lower = question.lower()
47
+
 
48
  if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
49
  return 'audio', True
 
 
50
  if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
51
  return 'excel', True
52
+ if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'wikipedia', 'albums', 'discography', 'published', 'website']):
 
 
53
  return 'search', True
54
+ if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count', 'what is', 'solve']):
 
 
55
  return 'math', True
 
56
  return 'llm', False
57
 
58
  def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
59
  """Bearbeta frågan med specifika verktyg"""
60
  trace_log = f"Detected {tool_type} task. Processing...\n"
61
+
62
  try:
63
  if tool_type == 'audio':
 
64
  audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
65
  if audio_files:
66
  result = transcribe_audio(audio_files[0])
67
  trace_log += f"Audio transcription: {result}\n"
68
  return result, trace_log
69
+ else:
70
+ return "No audio file mentioned in the question.", trace_log
71
+
72
  elif tool_type == 'excel':
 
73
  excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
74
  if excel_files:
75
  result = analyze_excel(excel_files[0])
76
  trace_log += f"Excel analysis: {result}\n"
77
  return result, trace_log
78
+ else:
79
+ return "No Excel file mentioned in the question.", trace_log
80
+
81
  elif tool_type == 'search':
82
+ search_query = question # This might need refinement to extract just the search query
 
83
  result = search_duckduckgo(search_query)
84
  trace_log += f"Search results: {result}\n"
85
  return result, trace_log
86
+
87
+ elif tool_type == 'math':
88
+ math_expression_match = re.search(r'calculate (.+)', question, re.IGNORECASE)
89
+ if math_expression_match:
90
+ expression = math_expression_match.group(1).strip()
91
+ result = calculate_math(expression)
92
+ trace_log += f"Math calculation: {result}\n"
93
+ return result, trace_log
94
+ else:
95
+ return "No clear mathematical expression found in the question.", trace_log
96
+
97
  except Exception as e:
98
  trace_log += f"Error using {tool_type} tool: {str(e)}\n"
99
  return f"Error: {str(e)}", trace_log
100
+
101
  return "No valid input found for tool", trace_log
102
 
103
  def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
104
  """Använd LLM för reasoning med kontext"""
105
  trace_log = "Using LLM for reasoning...\n"
106
+
107
+ # Combine system prompt, context, and question, ensuring it fits token limit
108
  if context:
109
  prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
110
  else:
111
  prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
112
+
113
+ # Tokenize and truncate if necessary
114
+ inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=self.tokenizer.model_max_length)
115
+
116
  try:
117
+ # Generate response using the model's generate method for more control
118
+ # You can add generation arguments here, e.g., temperature, top_k, etc.
119
+ outputs = self.model.generate(
120
+ inputs.input_ids,
121
+ max_new_tokens=256,
122
+ do_sample=False, # Set to True to enable temperature and other sampling parameters
123
+ # temperature=0.1, # Example: Only if do_sample is True
124
+ )
125
+ response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
126
+
127
  trace_log += f"LLM response: {response}\n"
128
  return response, trace_log
129
  except Exception as e:
 
133
  def __call__(self, question: str) -> Tuple[str, str]:
134
  """Huvudfunktion som bearbetar frågan"""
135
  total_trace = f"Processing question: {question}\n"
136
+
 
137
  tool_type, needs_tool = self.needs_tool(question)
138
  total_trace += f"Tool needed: {tool_type}\n"
139
+
140
  context = ""
141
  if needs_tool and tool_type != 'llm':
 
142
  tool_result, tool_trace = self.process_with_tools(question, tool_type)
143
  total_trace += tool_trace
144
  context = tool_result
145
+
 
146
  llm_response, llm_trace = self.reason_with_llm(question, context)
147
  total_trace += llm_trace
148
+
 
149
  final_answer = self.extract_final_answer(llm_response)
150
  total_trace += f"Final answer extracted: {final_answer}\n"
 
 
151
 
152
+ return final_answer, total_trace
 
 
 
 
 
 
 
 
153