Freddolin commited on
Commit
c3ff8d8
·
verified ·
1 Parent(s): 674da7a

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +29 -145
agent.py CHANGED
@@ -1,153 +1,37 @@
1
  import os
2
- import json
3
- import re
4
- from typing import Tuple, Dict, Any
5
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM # Import AutoTokenizer and AutoModelForSeq2SeqLM
6
 
7
- from tools.asr_tool import transcribe_audio
8
- from tools.excel_tool import analyze_excel
9
- from tools.search_tool import search_duckduckgo
10
- from tools.math_tool import calculate_math # Make sure to import your math tool
11
 
12
  class GaiaAgent:
13
- def __init__(self):
14
- token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
15
- if not token:
16
- raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
17
-
18
- # Specify the model and load tokenizer and model separately for better control
19
- model_name = "google/flan-t5-large"
20
- self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
21
- self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=token)
22
-
23
- # Use the pipeline with the loaded model and tokenizer
24
- self.llm = pipeline(
25
- "text2text-generation",
26
- model=self.model,
27
- tokenizer=self.tokenizer,
28
- device="cpu", # Consider "cuda" if you have a GPU
29
- max_new_tokens=256,
30
- do_sample=False, # Set to True if you want to use temperature and top_p/k
31
- # temperature=0.1, # Removed, as it's not a valid pipeline initialization flag here
32
  )
33
 
34
- self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
35
-
36
- def extract_final_answer(self, text: str) -> str:
37
- """Extrahera det slutliga svaret från modellens output"""
38
- final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
39
- if final_answer_match:
40
- return final_answer_match.group(1).strip()
41
- sentences = text.strip().split('\n')
42
- return sentences[-1].strip() if sentences else text.strip()
43
-
44
- def needs_tool(self, question: str) -> Tuple[str, bool]:
45
- """Bestäm vilket verktyg som behövs baserat på frågan"""
46
- question_lower = question.lower()
47
-
48
- if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
49
- return 'audio', True
50
- if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
51
- return 'excel', True
52
- if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'wikipedia', 'albums', 'discography', 'published', 'website']):
53
- return 'search', True
54
- if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count', 'what is', 'solve']):
55
- return 'math', True
56
- return 'llm', False
57
-
58
- def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
59
- """Bearbeta frågan med specifika verktyg"""
60
- trace_log = f"Detected {tool_type} task. Processing...\n"
61
-
62
  try:
63
- if tool_type == 'audio':
64
- audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
65
- if audio_files:
66
- result = transcribe_audio(audio_files[0])
67
- trace_log += f"Audio transcription: {result}\n"
68
- return result, trace_log
69
- else:
70
- return "No audio file mentioned in the question.", trace_log
71
-
72
- elif tool_type == 'excel':
73
- excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
74
- if excel_files:
75
- result = analyze_excel(excel_files[0])
76
- trace_log += f"Excel analysis: {result}\n"
77
- return result, trace_log
78
- else:
79
- return "No Excel file mentioned in the question.", trace_log
80
-
81
- elif tool_type == 'search':
82
- search_query = question # This might need refinement to extract just the search query
83
- result = search_duckduckgo(search_query)
84
- trace_log += f"Search results: {result}\n"
85
- return result, trace_log
86
-
87
- elif tool_type == 'math':
88
- math_expression_match = re.search(r'calculate (.+)', question, re.IGNORECASE)
89
- if math_expression_match:
90
- expression = math_expression_match.group(1).strip()
91
- result = calculate_math(expression)
92
- trace_log += f"Math calculation: {result}\n"
93
- return result, trace_log
94
- else:
95
- return "No clear mathematical expression found in the question.", trace_log
96
-
97
  except Exception as e:
98
- trace_log += f"Error using {tool_type} tool: {str(e)}\n"
99
- return f"Error: {str(e)}", trace_log
100
-
101
- return "No valid input found for tool", trace_log
102
-
103
- def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
104
- """Använd LLM för reasoning med kontext"""
105
- trace_log = "Using LLM for reasoning...\n"
106
-
107
- # Combine system prompt, context, and question, ensuring it fits token limit
108
- if context:
109
- prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
110
- else:
111
- prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
112
-
113
- # Tokenize and truncate if necessary
114
- inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=self.tokenizer.model_max_length)
115
-
116
- try:
117
- # Generate response using the model's generate method for more control
118
- # You can add generation arguments here, e.g., temperature, top_k, etc.
119
- outputs = self.model.generate(
120
- inputs.input_ids,
121
- max_new_tokens=256,
122
- do_sample=False, # Set to True to enable temperature and other sampling parameters
123
- # temperature=0.1, # Example: Only if do_sample is True
124
- )
125
- response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
126
-
127
- trace_log += f"LLM response: {response}\n"
128
- return response, trace_log
129
- except Exception as e:
130
- trace_log += f"Error with LLM: {str(e)}\n"
131
- return f"Error: {str(e)}", trace_log
132
-
133
- def __call__(self, question: str) -> Tuple[str, str]:
134
- """Huvudfunktion som bearbetar frågan"""
135
- total_trace = f"Processing question: {question}\n"
136
-
137
- tool_type, needs_tool = self.needs_tool(question)
138
- total_trace += f"Tool needed: {tool_type}\n"
139
-
140
- context = ""
141
- if needs_tool and tool_type != 'llm':
142
- tool_result, tool_trace = self.process_with_tools(question, tool_type)
143
- total_trace += tool_trace
144
- context = tool_result
145
-
146
- llm_response, llm_trace = self.reason_with_llm(question, context)
147
- total_trace += llm_trace
148
-
149
- final_answer = self.extract_final_answer(llm_response)
150
- total_trace += f"Final answer extracted: {final_answer}\n"
151
-
152
- return final_answer, total_trace
153
-
 
1
  import os
2
+ from transformers import pipeline
3
+ # Assuming you still want to use your local Flan-T5 model
4
+ # from tools.search_tool import search_duckduckgo # REMOVE THIS LINE
 
5
 
6
+ # NEW IMPORTS for smolagents
7
+ from smolagents import CodeAgent, DuckDuckGoSearchTool
8
+ from smolagents import TransformersModel # To use your local Hugging Face model
 
9
 
10
  class GaiaAgent:
11
+ def __init__(self, model_id: str = "google/flan-t5-large"):
12
+ # Initialize your LLM using smolagents's TransformersModel
13
+ # This allows smolagents to manage the interaction with your local model
14
+ self.llm_model = TransformersModel(model_id=model_id)
15
+
16
+ # Initialize the smolagents CodeAgent
17
+ # Pass the DuckDuckGoSearchTool directly to the agent's tools list
18
+ # You can add other tools here if needed
19
+ self.agent = CodeAgent(
20
+ model=self.llm_model,
21
+ tools=[DuckDuckGoSearchTool()],
22
+ # 'add_base_tools=True' can add common basic tools (like a Python interpreter)
23
+ # You might need to experiment with this. For now, let's keep it explicit.
24
+ add_base_tools=False,
25
+ verbose=True # This is helpful for debugging on Hugging Face Spaces logs
 
 
 
 
26
  )
27
 
28
+ def process_task(self, task_description: str) -> str:
29
+ # The smolagents agent.run() method handles the entire process
30
+ # of planning, tool use, and generating a final answer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  try:
32
+ # The agent will decide when to use DuckDuckGoSearchTool based on the prompt
33
+ response = self.agent.run(task_description)
34
+ return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  except Exception as e:
36
+ return f"An error occurred during agent processing: {e}"
37
+