Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,147 +2,72 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
-
import subprocess
|
6 |
-
import sys
|
7 |
|
8 |
-
# --- START: Force
|
|
|
|
|
9 |
try:
|
10 |
-
#
|
11 |
import duckduckgo_search
|
12 |
print("duckduckgo_search (via ddgs) is already installed.")
|
13 |
except ImportError:
|
14 |
print("duckduckgo_search not found. Attempting to install ddgs...")
|
15 |
try:
|
16 |
-
# Use ddgs as it's the updated package name
|
17 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "ddgs>=4.0.0"])
|
18 |
print("ddgs installed successfully.")
|
19 |
except Exception as e:
|
20 |
print(f"Failed to install ddgs: {e}")
|
21 |
-
# Critical error
|
22 |
raise RuntimeError(f"CRITICAL: Failed to install ddgs: {e}")
|
23 |
-
# --- END: Force
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
api_url = DEFAULT_API_URL
|
40 |
-
questions_url = f"{api_url}/questions"
|
41 |
-
submit_url = f"{api_url}/submit"
|
42 |
-
|
43 |
-
try:
|
44 |
-
agent = GaiaAgent()
|
45 |
-
except Exception as e:
|
46 |
-
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
|
50 |
-
try:
|
51 |
-
response = requests.get(questions_url, timeout=15)
|
52 |
-
response.raise_for_status()
|
53 |
-
questions_data = response.json()
|
54 |
-
except Exception as e:
|
55 |
-
return f"Error fetching questions: {e}", None
|
56 |
-
|
57 |
-
results_log = []
|
58 |
-
answers_payload = []
|
59 |
-
|
60 |
-
print("\n--- STARTING AGENT RUN ---")
|
61 |
-
for item in questions_data:
|
62 |
-
task_id = item.get("task_id")
|
63 |
-
question_text = item.get("question")
|
64 |
-
if not task_id or question_text is None:
|
65 |
-
continue
|
66 |
-
try:
|
67 |
-
final_answer, trace = agent(question_text)
|
68 |
-
|
69 |
-
print("\n--- QUESTION ---")
|
70 |
-
print(f"Task ID: {task_id}")
|
71 |
-
print(f"Question: {question_text}")
|
72 |
-
print("\n--- REASONING TRACE ---")
|
73 |
-
print(trace)
|
74 |
-
print("\n--- FINAL ANSWER (SUBMITTED) ---")
|
75 |
-
print(final_answer)
|
76 |
-
|
77 |
-
answers_payload.append({
|
78 |
-
"task_id": task_id,
|
79 |
-
"submitted_answer": final_answer,
|
80 |
-
"reasoning_trace": trace
|
81 |
-
})
|
82 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": final_answer})
|
83 |
-
except Exception as e:
|
84 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"})
|
85 |
-
|
86 |
-
if not answers_payload:
|
87 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
88 |
-
|
89 |
-
submission_data = {
|
90 |
-
"username": username.strip(),
|
91 |
-
"agent_code": agent_code,
|
92 |
-
"answers": answers_payload
|
93 |
-
}
|
94 |
-
|
95 |
try:
|
96 |
-
response = requests.post(
|
97 |
-
|
98 |
-
|
99 |
-
final_status = (
|
100 |
-
f"Submission Successful!\n"
|
101 |
-
f"User: {result_data.get('username')}\n"
|
102 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
103 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
104 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
105 |
)
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
-
return f"
|
110 |
-
|
111 |
|
|
|
112 |
with gr.Blocks() as demo:
|
113 |
-
gr.Markdown("# GAIA Agent
|
114 |
-
gr.Markdown(""
|
115 |
-
Logga in och kör agenten.\n
|
116 |
-
Du behöver INTE en OpenAI API-nyckel längre. Agenten kör en lokal modell.
|
117 |
-
""")
|
118 |
-
gr.LoginButton()
|
119 |
-
|
120 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
121 |
-
status_output = gr.Textbox(label="Submission Result")
|
122 |
-
results_table = gr.DataFrame(label="Answers")
|
123 |
-
|
124 |
-
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
125 |
-
|
126 |
-
if __name__ == "__main__":
|
127 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
128 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
129 |
-
space_id_startup = os.getenv("SPACE_ID")
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
134 |
-
else:
|
135 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
136 |
|
137 |
-
|
138 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
139 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
140 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
141 |
-
else:
|
142 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
143 |
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import subprocess # Needed for runtime pip install
|
6 |
+
import sys # Needed for runtime pip install
|
7 |
|
8 |
+
# --- START: Force ddgs installation workaround ---
|
9 |
+
# This block ensures 'ddgs' (which provides 'duckduckgo_search') is installed
|
10 |
+
# early, before smolagents tries to use its DuckDuckGoSearchTool.
|
11 |
try:
|
12 |
+
# Attempt to import duckduckgo_search to check if it's already available
|
13 |
import duckduckgo_search
|
14 |
print("duckduckgo_search (via ddgs) is already installed.")
|
15 |
except ImportError:
|
16 |
print("duckduckgo_search not found. Attempting to install ddgs...")
|
17 |
try:
|
18 |
+
# Use 'ddgs' as it's the updated package name
|
19 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "ddgs>=4.0.0"])
|
20 |
print("ddgs installed successfully.")
|
21 |
except Exception as e:
|
22 |
print(f"Failed to install ddgs: {e}")
|
23 |
+
# Critical error: if ddgs can't be installed, the app can't function.
|
24 |
raise RuntimeError(f"CRITICAL: Failed to install ddgs: {e}")
|
25 |
+
# --- END: Force ddgs installation workaround ---
|
26 |
|
27 |
+
# Now import the agent, as its dependencies (smolagents, duckduckgo_search) should be ready
|
28 |
+
from agent import GaiaAgent
|
29 |
|
30 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
31 |
|
32 |
+
def run_agent_and_score(task_description: str) -> str:
|
33 |
+
# Initialize the agent within the function, so it's fresh for each run
|
34 |
+
# This also helps if the agent initialization is heavy or stateful
|
35 |
+
gaia_agent = GaiaAgent()
|
36 |
+
|
37 |
+
# Process the task
|
38 |
+
agent_output = gaia_agent.process_task(task_description)
|
39 |
+
|
40 |
+
# Send output to the scoring API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
+
response = requests.post(
|
43 |
+
f"{DEFAULT_API_URL}/score_agent",
|
44 |
+
json={"task_description": task_description, "agent_response": agent_output}
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
+
response.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
|
47 |
+
scoring_result = response.json()
|
48 |
+
score_info = f"Scoring Result:\nTotal Score: {scoring_result.get('total_score')}\nCorrectness Score: {scoring_result.get('correctness_score')}\nExplanation: {scoring_result.get('explanation', 'No explanation provided.')}"
|
49 |
+
return f"Agent Output:\n{agent_output}\n\n---\n\n{score_info}"
|
50 |
+
except requests.exceptions.RequestException as e:
|
51 |
+
return f"Agent Output:\n{agent_output}\n\n---\n\nError connecting to scoring API: {e}"
|
52 |
except Exception as e:
|
53 |
+
return f"Agent Output:\n{agent_output}\n\n---\n\nAn unexpected error occurred during scoring: {e}"
|
|
|
54 |
|
55 |
+
# Gradio Interface setup
|
56 |
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("# GAIA Basic Agent Evaluator (Freddolin)")
|
58 |
+
gr.Markdown("Enter a task description for the agent to process. The agent's output will be displayed, followed by its score from the GAIA scoring API.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
task_input = gr.Textbox(label="Task Description", placeholder="e.g., 'What is the capital of France?'")
|
61 |
+
output_text = gr.Textbox(label="Agent Output & Score", interactive=False)
|
|
|
|
|
|
|
62 |
|
63 |
+
run_button = gr.Button("Run Agent & Score")
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
run_button.click(
|
66 |
+
fn=run_agent_and_score,
|
67 |
+
inputs=task_input,
|
68 |
+
outputs=output_text
|
69 |
+
)
|
70 |
|
71 |
+
# Launch the Gradio app
|
72 |
+
demo.launch(debug=True) # debug=True can provide more info in logs during development
|
73 |
|