Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,92 +1,40 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
AutoProcessor,
|
7 |
-
AutoModelForSpeechSeq2Seq
|
8 |
-
)
|
9 |
-
from duckduckgo_search import DDGS
|
10 |
-
import pandas as pd
|
11 |
-
import os
|
12 |
-
|
13 |
-
SYSTEM_PROMPT = """
|
14 |
-
You are a helpful AI assistant. Think step by step to solve the problem. If the question requires reasoning, perform it. If it refers to a search or file, use the result provided. At the end, return ONLY the final answer string. No explanations.
|
15 |
-
"""
|
16 |
|
17 |
class GaiaAgent:
|
18 |
-
def __init__(self
|
19 |
-
|
20 |
-
self.
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
except Exception:
|
52 |
-
return ""
|
53 |
-
|
54 |
-
def handle_excel(self, file_path: str) -> str:
|
55 |
-
try:
|
56 |
-
df = pd.read_excel(file_path)
|
57 |
-
df.columns = [col.lower() for col in df.columns]
|
58 |
-
if 'category' in df.columns and 'sales' in df.columns:
|
59 |
-
food_sales = df[df['category'].str.lower() != 'drink']['sales'].sum()
|
60 |
-
return f"{food_sales:.2f}"
|
61 |
-
except Exception:
|
62 |
-
return ""
|
63 |
-
return ""
|
64 |
-
|
65 |
-
def __call__(self, question: str, files: dict = None) -> tuple[str, str]:
|
66 |
-
try:
|
67 |
-
context = ""
|
68 |
-
if files:
|
69 |
-
for filename, filepath in files.items():
|
70 |
-
if filename.endswith(".mp3") or filename.endswith(".wav"):
|
71 |
-
context = self.transcribe_audio(filepath)
|
72 |
-
break
|
73 |
-
elif filename.endswith(".xlsx"):
|
74 |
-
excel_result = self.handle_excel(filepath)
|
75 |
-
return excel_result.strip(), excel_result.strip()
|
76 |
-
elif "http" in question.lower() or "wikipedia" in question.lower():
|
77 |
-
context = self.search(question)
|
78 |
-
|
79 |
-
prompt = f"{SYSTEM_PROMPT}\n\n{context}\n\nQuestion: {question.strip()}"
|
80 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device)
|
81 |
-
outputs = self.model.generate(
|
82 |
-
**inputs,
|
83 |
-
max_new_tokens=128,
|
84 |
-
do_sample=False,
|
85 |
-
pad_token_id=self.tokenizer.pad_token_id
|
86 |
-
)
|
87 |
-
output_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
-
final = output_text.strip()
|
89 |
-
return final, final
|
90 |
-
except Exception as e:
|
91 |
-
return "ERROR", f"Agent failed: {e}"
|
92 |
-
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from tools.asr_tool import transcribe_audio
|
3 |
+
from tools.excel_tool import analyze_excel
|
4 |
+
from tools.search_tool import search_duckduckgo
|
5 |
+
import mimetypes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
class GaiaAgent:
|
8 |
+
def __init__(self):
|
9 |
+
print("Loading model...")
|
10 |
+
self.qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
11 |
+
|
12 |
+
def __call__(self, question: str):
|
13 |
+
trace = ""
|
14 |
+
|
15 |
+
# Handle audio
|
16 |
+
if question.lower().strip().endswith(('.mp3', '.wav')):
|
17 |
+
trace += "Audio detected. Running transcription...\n"
|
18 |
+
text = transcribe_audio(question.strip())
|
19 |
+
trace += f"Transcribed text: {text}\n"
|
20 |
+
answer = self.qa_pipeline(text, max_new_tokens=64)[0]['generated_text']
|
21 |
+
return answer.strip(), trace
|
22 |
+
|
23 |
+
# Handle Excel
|
24 |
+
if question.lower().strip().endswith(('.xls', '.xlsx')):
|
25 |
+
trace += "Excel detected. Running analysis...\n"
|
26 |
+
answer = analyze_excel(question.strip())
|
27 |
+
trace += f"Extracted value: {answer}\n"
|
28 |
+
return answer.strip(), trace
|
29 |
+
|
30 |
+
# Handle web search
|
31 |
+
if any(keyword in question.lower() for keyword in ["wikipedia", "video", "youtube", "article"]):
|
32 |
+
trace += "Performing DuckDuckGo search...\n"
|
33 |
+
summary = search_duckduckgo(question)
|
34 |
+
trace += f"Summary from search: {summary}\n"
|
35 |
+
answer = self.qa_pipeline(summary + "\n" + question, max_new_tokens=64)[0]['generated_text']
|
36 |
+
return answer.strip(), trace
|
37 |
+
|
38 |
+
trace += "General question. Using local model...\n"
|
39 |
+
answer = self.qa_pipeline(question, max_new_tokens=64)[0]['generated_text']
|
40 |
+
return answer.strip(), trace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|