Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,395 Bytes
10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 6c43b5d 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 56b4aa9 10dbb25 f32d334 10dbb25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# app.py
# ===================== Imports =====================
from qwen_vl_utils import fetch_image
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
import gradio as gr
import librosa
import torch
import numpy as np
import soundfile as sf
from threading import Thread
from copy import deepcopy
import os
# NEW: ZeroGPU requirement
import spaces
# ===================== Load Model (lazy move to GPU) =====================
model_path = "FreedomIntelligence/ShizhenGPT-7B-Omni"
# 先在 CPU 上加载权重;等真正需要推理时再迁移到 GPU(由 @spaces.GPU 管理)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16, # 如遇不支持,可改成 torch.float16
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True
)
model.eval()
# 某些权重会把 chat_template 放 tokenizer 上;做个兼容
if hasattr(processor, "tokenizer") and hasattr(processor.tokenizer, "chat_template"):
processor.chat_template = processor.tokenizer.chat_template
# 标志位:仅在第一次推理时把模型迁移到 GPU
_MODEL_ON_CUDA = False
# ===================== Streaming Generation =====================
def generate_with_streaming(model, processor, text, images=None, audios=None, history=None):
# Process images
processed_images = None
if images:
text = "".join(["<|vision_start|><|image_pad|><|vision_end|>"] * len(images)) + text
processed_images = [
fetch_image({"type": "image", "image": img, "max_pixels": 360 * 420})
for img in images
if img is not None
]
# Process audios
processed_audios = None
if audios:
text = "".join(["<|audio_bos|><|AUDIO|><|audio_eos|>"] * len(audios)) + text
processed_audios = [audio for audio in audios if audio is not None]
# Build conversation history
messages = []
if history:
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Clean multimodal tokens from previous history
for m in messages:
m["content"] = m["content"].replace("<|audio_bos|><|AUDIO|><|audio_eos|>", "").replace(
"<|vision_start|><|image_pad|><|vision_end|>", ""
)
# Add current user input
messages.append({"role": "user", "content": text})
# Prepare model input
templated = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) or ""
input_data = processor(
text=[templated],
audios=processed_audios,
images=processed_images,
return_tensors="pt",
padding=True,
)
# Move tensors to the current model device
for k, v in input_data.items():
if hasattr(v, "to"):
input_data[k] = v.to(model.device)
# Start streaming generation
streamer = TextIteratorStreamer(
processor.tokenizer, skip_special_tokens=True, skip_prompt=True
)
generation_kwargs = dict(
**input_data,
streamer=streamer,
max_new_tokens=1500,
do_sample=True,
temperature=0.2,
top_p=0.8,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield generated tokens in stream
for new_text in streamer:
yield new_text
# ===================== Audio Preprocessing =====================
def process_audio(audio):
"""Convert recorded/loaded audio into required sampling rate."""
if audio is None:
return None
try:
sr, y = audio
if y.ndim > 1:
y = y[:, 0] # Keep the first channel only
save_path = "./temp.wav"
sf.write(save_path, y, sr)
# 有些处理器没有 feature_extractor;做个兜底
target_sr = getattr(
getattr(processor, "feature_extractor", None), "sampling_rate", 16000
)
y_resampled, _ = librosa.load(save_path, sr=target_sr, mono=True)
return y_resampled
except Exception as e:
print(f"Error processing audio: {e}")
return None
# ===================== Prediction Function for Gradio (ZeroGPU) =====================
@spaces.GPU(duration=120) # 关键:让 ZeroGPU 能检测到 GPU 函数,并把一次调用的最长占用设长些
def predict(message, image, audio, chatbox):
global _MODEL_ON_CUDA, model
# 首次调用被装饰的函数时,ZeroGPU 才真正分配 GPU;此时再迁移模型
if not _MODEL_ON_CUDA:
model.to("cuda")
_MODEL_ON_CUDA = True
chat_history = deepcopy(chatbox)
processed_audio = [process_audio(audio)] if audio is not None else None
processed_image = [image] if image is not None else None
chatbox.append([message, ""])
response = ""
# Streaming model response
for chunk in generate_with_streaming(model, processor, message, processed_image, processed_audio, chat_history):
response += chunk
chatbox[-1][1] = response
# 作为生成器返回,Gradio Chatbot 将实时刷新
yield chatbox
print("\n=== Complete Model Response ===")
print(response)
print("============================\n", flush=True)
return chatbox
# ===================== CSS for UI =====================
css = """
.gradio-container {
background-color: #f7f7f7;
font-family: 'Arial', sans-serif;
}
.chat-message {
padding: 15px;
border-radius: 10px;
margin-bottom: 10px;
}
.user-message {
background-color: #e6f7ff;
border-left: 5px solid #1890ff;
}
.bot-message {
background-color: #f2f2f2;
border-left: 5px solid #52c41a;
}
.title {
text-align: center;
color: #1890ff;
font-size: 24px;
margin-bottom: 20px;
}
"""
# ===================== Gradio App =====================
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 class='title'>ShizhenGPT: Multimodal LLM for Traditional Chinese Medicine (Vision, Audio, Text)</h1>")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=500)
message = gr.Textbox(label="Your Question", placeholder="Type your question here...")
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload Image")
audio_input = gr.Audio(type="numpy", label="Record or Upload Audio")
# Submit button: run prediction
submit_btn.click(
predict,
inputs=[message, image_input, audio_input, chatbot],
outputs=[chatbot],
show_progress=True
).then(
lambda: "", # Clear textbox after sending
outputs=[message]
)
# Clear button: reset inputs and chat history
clear_btn.click(
lambda: (None, None, None, []),
outputs=[message, image_input, audio_input, chatbot]
)
# ===================== Run App =====================
if __name__ == "__main__":
# ZeroGPU 下建议限制并发,避免重复申请 GPU
demo.queue().launch(
server_name="0.0.0.0", server_port=7860, share=True
)
|