File size: 6,063 Bytes
bb8ff6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea5e3a1
 
 
 
 
 
 
 
bb8ff6c
ea5e3a1
 
bb8ff6c
 
ea5e3a1
 
bb8ff6c
ea5e3a1
 
 
bb8ff6c
 
 
ea5e3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb8ff6c
ea5e3a1
 
bb8ff6c
ea5e3a1
 
 
 
 
 
 
 
bb8ff6c
 
ea5e3a1
 
 
 
 
 
 
 
bb8ff6c
 
 
ea5e3a1
 
 
 
 
 
 
 
 
bb8ff6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import copy as cp
import json, sys
from collections import defaultdict
from urllib.request import urlopen

import gradio as gr
import numpy as np
import pandas as pd

from meta_data import DEFAULT_TASK


def listinstr(lst, s):
    assert isinstance(lst, list)
    for item in lst:
        if item in s:
            return True
    return False


def load_results():
    #data = json.loads(urlopen(URL).read())
    with open('results.json', 'r') as file:
        data = json.load(file)
    return data


def nth_large(val, vals):
    return sum([1 for v in vals if v > val]) + 1

def format_timestamp(timestamp):
    date = timestamp[:-4] + '.' + timestamp[-4:-2] + '.' + timestamp[-2:]
    return date

# def BUILD_L1_DF(results, fields):
#     check_box = {}
#     check_box['essential'] = ['Model']
#     # revise there to set default dataset
#     check_box['required'] = DEFAULT_TASK
#     check_box['all'] = DEFAULT_TASK
#     type_map = defaultdict(lambda: 'number')
#     check_box['type_map'] = type_map

#     df = generate_table(results, fields)
#     return df, check_box


def BUILD_L2_DF(results, benchmark):
    results=results[benchmark]
    model_list=[]
    all_fields=list(results.keys())
    for task in results:
        model_list+=list(results[task].keys())
    model_list=list(set(model_list))

    res = defaultdict(list)
    if benchmark not in ["RedCode","NYU CTF Bench","PrimeVul","SWE-bench-verified"]:
        res['Model']=model_list
    elif benchmark=="SWE-bench-verified":
        res['Agent']=model_list
    elif benchmark == "PrimeVul":
        used=[]
        for task in all_fields:
            for model in results[task]:
                for extra in results[task][model]:
                    if [model,extra] not in used:
                        res['Model'].append(model)
                        res['Method'].append(extra)
                        used.append([model,extra])
    else:
        used=[]
        for task in all_fields:
            for model in results[task]:
                for extra in results[task][model]:
                    if [model,extra] not in used:
                        res['Model'].append(model)
                        res['Agent'].append(extra)
                        used.append([model,extra])
    
    if benchmark not in ["RedCode","NYU CTF Bench",'PrimeVul']:
        for task in all_fields:
            for model in model_list:
                if model in results[task]:
                    res[task].append(results[task][model])
                else:
                    res[task].append(None)
    else:
        for task in all_fields:
            for model, extra in used:
                if model in results[task] and extra in results[task][model]:
                    res[task].append(results[task][model][extra])
                else:
                    res[task].append(None)

    df = pd.DataFrame(res)
    rank_criteria=all_fields[0]
    valid, missing = df[~pd.isna(df[rank_criteria])], df[pd.isna(df[rank_criteria])]
    valid = valid.sort_values(rank_criteria)
    valid = valid.iloc[::-1]
    if len(all_fields):
        missing = missing.iloc[::-1]
    df = pd.concat([valid, missing])

    required_fields = all_fields

    check_box = {}
    if benchmark=="SWE-bench-verified":
        check_box['essential'] = ['Agent']
    elif benchmark=='PrimeVul':
        check_box['essential'] = ['Model','Method']
    elif benchmark in ["RedCode","NYU CTF Bench"]:
        check_box['essential'] = ['Model','Agent']
    else:
        check_box['essential'] = ['Model']

    check_box['required'] = required_fields
    check_box['all'] = all_fields
    type_map = defaultdict(lambda: 'number')
    check_box['type_map'] = type_map
    return df, check_box


def generate_table(results, fields):
    model_list=[]
    task_list=fields
    benchmark_list=[]
    for task in results:
        for benchmark in results[task]:
            if benchmark!='category':
                benchmark_list+=[benchmark]
                model_list+=list(results[task][benchmark].keys())
    model_list=list(set(model_list))

    res = defaultdict(list)
    res['Model']=model_list

    average_score={}
    cnt={}
    for task in task_list:
        task_score=[]
        for model in model_list:
            score=[]
            for benchmark in results[task]:
                if benchmark != 'category':
                    if model not in results[task][benchmark]:
                        score.append(None)
                    elif not isinstance(results[task][benchmark][model], (int, float)):
                        score.append((results[task][benchmark][model]["autonomous"]+results[task][benchmark][model]["assisted"])/2)
                    else:
                        score.append(results[task][benchmark][model])
            if not any (item is not None for item in score):
                score=None
            else:
                score=np.mean([s for s in score if s is not None])
                if model not in average_score:
                    average_score[model]=score
                    cnt[model]=1
                else:
                    average_score[model]=((average_score[model]*cnt[model])+score)/(cnt[model]+1)
                    cnt[model]+=1
            task_score.append(score)
        res[task]=task_score

    #res['Avg Score']=[average_score[model] for model in model_list]
    #res['Avg Rank'] = [sorted(res['Avg Score'], reverse=True).index(score) + 1 for score in res['Avg Score']]

    df = pd.DataFrame(res)
    # valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])]
    # valid = valid.sort_values('Avg Score')
    # valid = valid.iloc[::-1]
    # if len(fields):
    #     missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0])
    #     missing = missing.iloc[::-1]
    # df = pd.concat([valid, missing])
    return df