File size: 17,742 Bytes
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random

import pyarrow.parquet as pq
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
import numpy as np
import re

torchaudio.set_audio_backend('soundfile')

AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
CHORUS = {"intro": 0, "chorus": 1, "verse1": 2, "verse2": 3, "verse": 2,
		  "outro": 4}

metadata_pattern = re.compile(r'^\[(ti|ar|al|by|offset):.*\]$')
timestamp_pattern = re.compile(r'^\[\d{2}:\d{2}\.\d{2}\](.*)$')


def parquet_opener(data, mode='train', audio_data={}):
	""" Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
	for sample in data:
		assert 'src' in sample

		url = sample['src']
		try:
			df = pq.read_table(url).to_pandas()
			for i in df.index:
				sample.update(dict(df.loc[i]))
				yield {**sample}
		except Exception as ex:
			logging.warning('Failed to open {}, ex info {}'.format(url, ex))


def clean_lyrics(data, mode="train"):
	for sample in data:
		lyrics = sample["text"]
		cleaned = []
		for line in lyrics.splitlines():
			if metadata_pattern.match(line):
				continue
			timestamp_match = timestamp_pattern.match(line)
			if timestamp_match:
				lyric = timestamp_match.group(1).strip()
				if lyric:
					cleaned.append(lyric)
			else:
				if line.strip():
					cleaned.append(line.strip())
		sample["text"] = '\n'.join(cleaned)
		yield sample


def cut_by_length(data, max_length=8000, num_times=4, mode="train"):
	for sample in data:
		if "semantic_token" in sample:
			sample["semantic_token"] = [
				sample["semantic_token"][0][:max_length]]
		if "acoustic_token" not in sample:
			sample["acoustic_token"] = sample["speech_token"]
		sample["acoustic_token"] = sample["acoustic_token"][
								   :max_length * num_times]

		yield sample


def filter(data,
           max_length=22500,  # 22500 #5min #10240
           max_acoustic_length=45000,
           min_length=10,
           min_acoustic_length=150,
           token_max_length=200,
           token_min_length=1,
           min_output_input_ratio=0.0005,
           max_output_input_ratio=1,
           mode='train'):
	""" Filter sample according to feature and label length
        Inplace operation.

        Args::
            data: Iterable[{key, wav, label, sample_rate}]
            max_length: drop utterance which is greater than max_length(10ms)
            min_length: drop utterance which is less than min_length(10ms)
            token_max_length: drop utterance which is greater than
                token_max_length, especially when use char unit for
                english modeling
            token_min_length: drop utterance which is
                less than token_max_length
            min_output_input_ratio: minimal ration of
                token_length / feats_length(10ms)
            max_output_input_ratio: maximum ration of
                token_length / feats_length(10ms)

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
	if mode == "train":
		for sample in data:
			if "semantic_token" in sample:
				new_sample_frames = sample['semantic_token'][0].shape[0]
			else:
				new_sample_frames = sample['speech_token']

			if "text_token" in sample:
				new_sample_frames += len(sample['text_token'])

			if new_sample_frames > max_length or new_sample_frames < min_length:
				print(f"skipped 1 item length={new_sample_frames}")
				continue

			sample["chorus"] = sample["chorus"].split(",")
			if not isinstance(sample["time_start"], np.ndarray):
				sample["time_start"] = [sample["time_start"]]
				sample["time_end"] = [sample["time_end"]]
			for i, t in enumerate(sample["chorus"]):
				if sample["chorus"][i] == "verse":
					sample["chorus"][i] = "verse1"

			yield sample

	if mode == "train_flow":
		for sample in data:
			if "semantic_token" in sample:
				new_sample_frames = sample['semantic_token'][0].shape[0]
			if "acoustic_token" in sample:
				target_sample_frames = sample['acoustic_token'][0].shape[0]

			if new_sample_frames > max_length or new_sample_frames < min_acoustic_length or new_sample_frames < min_length or target_sample_frames > max_acoustic_length:
				print(
					f"skipped 1 item length={new_sample_frames}, target_length={target_sample_frames}")
				continue

			yield sample

	elif mode == "inference":
		for sample in data:
			yield sample


def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
	""" Resample data.
        Inplace operation.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            resample_rate: target resample rate

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
	for sample in data:
		assert 'sample_rate' in sample
		assert 'speech' in sample
		sample_rate = sample['sample_rate']
		waveform = sample['speech']
		if sample_rate != resample_rate:
			if sample_rate < min_sample_rate:
				continue
			sample['sample_rate'] = resample_rate
			sample['speech'] = torchaudio.transforms.Resample(
					orig_freq=sample_rate, new_freq=resample_rate)(waveform)
		max_val = sample['speech'].abs().max()
		if max_val > 1:
			sample['speech'] /= max_val
		yield sample


def truncate(data, truncate_length=24576, mode='train'):
	""" Truncate data.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            truncate_length: truncate length

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
	for sample in data:
		waveform = sample['audio']
		if waveform.shape[1] > truncate_length:
			start = random.randint(0, waveform.shape[1] - truncate_length)
			waveform = waveform[:, start: start + truncate_length]
		else:
			waveform = torch.concat([waveform, torch.zeros(1, truncate_length -
														   waveform.shape[1])],
									dim=1)
		sample['audio'] = waveform
		yield sample


def upsample(data, resample_rate=48000, min_sample_rate=16000, mode='train',
			 n_codebook=4):
	""" Resample data.
        Inplace operation.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            resample_rate: target resample rate

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
	for sample in data:
		assert 'semantic_token' in sample
		# TODO: unify data processing key names
		if 'acoustic_token' not in sample:
			continue

		if 'sample_rate' in sample.keys():
			sample_rate = sample['sample_rate']
		else:
			sample_rate = 24000
		token = np.array(sample['semantic_token'][0][:-1])

		# Calculate the repetition factor for resampling
		repetition_factor = int(n_codebook * resample_rate / sample_rate)
		if sample_rate != resample_rate:
			if sample_rate < min_sample_rate:
				continue
			sample['sample_rate'] = resample_rate
			sample['semantic_token'] = np.array(
					[np.repeat(token, repetition_factor)])

		yield sample

def compute_fbank(data,
				  feat_extractor,
				  mode='train'):
	""" Extract fbank

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
	for sample in data:
		assert 'sample_rate' in sample
		assert 'speech' in sample
		assert 'utt' in sample
		assert 'text_token' in sample
		waveform = sample['speech']
		mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
		sample['speech_feat'] = mat
		del sample['speech']
		yield sample


def parse_embedding(data, normalize, mode='train'):
	""" Parse utt_embedding/spk_embedding

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """

	for sample in data:
		sample['utt_embedding'] = torch.tensor(sample['utt_embedding'],
											   dtype=torch.float32)
		sample['spk_embedding'] = torch.tensor(sample['spk_embedding'],
											   dtype=torch.float32)
		if normalize:
			sample['utt_embedding'] = F.normalize(sample['utt_embedding'],
												  dim=0)
			sample['spk_embedding'] = F.normalize(sample['spk_embedding'],
												  dim=0)
		yield sample

def tokenize(data, get_tokenizer, allowed_special, mode='train'):
	""" Decode text to chars or BPE
        Inplace operation

        Args:
            data: Iterable[{key, wav, txt, sample_rate}]

        Returns:
            Iterable[{key, wav, txt, tokens, label, sample_rate}]
    """
	tokenizer = get_tokenizer()

	for sample in data:
		assert 'text' in sample
		sample['text_token'] = tokenizer.encode(sample['text'],
												allowed_special=allowed_special)
		yield sample


def shuffle(data, shuffle_size=10000, mode='train'):
	""" Local shuffle the data

        Args:
            data: Iterable[{key, feat, label}]
            shuffle_size: buffer size for shuffle

        Returns:
            Iterable[{key, feat, label}]
    """
	buf = []
	for sample in data:
		buf.append(sample)
		if len(buf) >= shuffle_size:
			random.shuffle(buf)
			for x in buf:
				yield x
			buf = []
	# The sample left over
	random.shuffle(buf)
	for x in buf:
		yield x


def sort(data, sort_size=500, mode='train'):
	""" Sort the data by feature length.
        Sort is used after shuffle and before batch, so we can group
        utts with similar lengths into a batch, and `sort_size` should
        be less than `shuffle_size`

        Args:
            data: Iterable[{key, feat, label}]
            sort_size: buffer size for sort

        Returns:
            Iterable[{key, feat, label}]
    """

	buf = []
	for sample in data:
		if sample["chorus"] == "verse":
			sample["chorus"] = "verse1"

		if sample["acoustic_token"].shape[0] == 1:
			sample["acoustic_token"] = np.concatenate(
					sample["acoustic_token"][0])
		else:
			sample["acoustic_token"] = np.concatenate(sample["acoustic_token"])

		sample["acoustic_token"] = torch.from_numpy(sample["acoustic_token"])
		buf.append(sample)
		if len(buf) >= sort_size:
			buf.sort(key=lambda x: x['acoustic_token'].size(0))
			for x in buf:
				yield x
			buf = []
	# The sample left over
	buf.sort(key=lambda x: x['acoustic_token'].size(0))
	for x in buf:
		yield x


def static_batch(data, batch_size=32):
	""" Static batch the data by `batch_size`

        Args:
            data: Iterable[{key, feat, label}]
            batch_size: batch size

        Returns:
            Iterable[List[{key, feat, label}]]
    """
	buf = []
	data_empty = True
	for sample in data:
		data_empty = False
		buf.append(sample)
		if len(buf) >= batch_size:
			yield buf
			buf = []
	if data_empty:
		raise ValueError("data is empty")
	if len(buf) > 0:
		yield buf


def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
	""" Dynamic batch the data until the total frames in batch
        reach `max_frames_in_batch`

        Args:
            data: Iterable[{key, feat, label}]
            max_frames_in_batch: max_frames in one batch

        Returns:
            Iterable[List[{key, feat, label}]]
    """
	buf = []
	longest_frames = 0
	for sample in data:
		assert 'acoustic_token' in sample
		assert isinstance(sample['acoustic_token'], torch.Tensor)

		if 'semantic_token' in sample:
			new_sample_frames = sample['semantic_token'][0].shape[0]
		else:
			new_sample_frames = sample['semantic_token']

		if "text_token" in sample:
			new_sample_frames += len(sample['text_token'])

		longest_frames = max(longest_frames, new_sample_frames)
		frames_after_padding = longest_frames * (len(buf) + 1)

		if frames_after_padding > max_frames_in_batch:
			if len(buf) > 0:
				yield buf
			buf = [sample]
			longest_frames = new_sample_frames
		else:
			buf.append(sample)
	if len(buf) > 0:
		yield buf


def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000,
		  mode='train'):
	""" Wrapper for static/dynamic batch
    """
	if mode == 'inference':
		return static_batch(data, 1)
	elif mode == 'processing':
		return static_batch(data, batch_size)
	else:
		if batch_type == 'static':
			return static_batch(data, batch_size)
		elif batch_type == 'dynamic':
			return dynamic_batch(data, max_frames_in_batch)
		else:
			logging.fatal('Unsupported batch type {}'.format(batch_type))


def padding(data, mode='train'):
	""" Padding the data into training data

        Args:
            data: Iterable[List[{key, feat, label}]]

        Returns:
            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
    """
	if mode == "train":
		for sample in data:
			assert isinstance(sample, list)
			if len(sample) != 0:
				acoustic_feat_len = torch.tensor(
						[x['acoustic_token'].size(0) for x in sample],
						dtype=torch.int32)
				order = torch.argsort(acoustic_feat_len, descending=True)
				utts = [sample[i]['utt'] for i in order]
				acoustic_token = [
					sample[i]['acoustic_token'].clone().to(torch.int32) for i in
					order]
				acoustic_token_len = torch.tensor(
						[i.size(0) for i in acoustic_token], dtype=torch.int32)

				acoustic_token = pad_sequence(acoustic_token,
											  batch_first=True,
											  padding_value=0)

				text = [sample[i]['text'] for i in order]
				text_token = [torch.tensor(sample[i]['text_token']).long() for i
							  in order]
				text_token_len = torch.tensor([i.size(0) for i in text_token],
											  dtype=torch.int32)
				text_token = pad_sequence(text_token, batch_first=True,
										  padding_value=0)
				time_start = torch.tensor(
						[sample[i]['time_start'] for i in order])
				time_end = torch.tensor([sample[i]['time_end'] for i in order])

				if isinstance(sample[0]['chorus'], str):
					chorus = torch.tensor(
							[CHORUS[sample[i]['chorus']] for i in order])
				else:
					chorus = [
						torch.tensor([CHORUS[t] for t in sample[i]['chorus']])
						for i in order]
					chorus = pad_sequence(chorus, batch_first=True,
										  padding_value=-1)

				batch = {
					"utts"              : utts,
					"acoustic_token"    : acoustic_token,
					"acoustic_token_len": acoustic_token_len,
					"time_start"        : time_start,
					"time_end"          : time_end,
					"chorus"            : chorus,
					"text"              : text,
					"text_token"        : text_token,
					"text_token_len"    : text_token_len,
				}

				if "semantic_token" in sample[0]:
					semantic_token = [
						torch.tensor(sample[i]['semantic_token'][0],
									 dtype=torch.int32) for i in order]
					semantic_token_len = torch.tensor(
							[i.size(0) for i in semantic_token],
							dtype=torch.int32)
					semantic_token = pad_sequence(semantic_token,
												  batch_first=True,
												  padding_value=0)
					batch.update({"semantic_token"    : semantic_token,
								  "semantic_token_len": semantic_token_len})

				yield batch
			else:
				logging.info("WARNING: sample is empty []!")

	elif mode == "inference":
		for sample in data:
			assert isinstance(sample, list)
			utts = [sample[i]['utt'] for i in range(len(sample))]
			text = [sample[i]['text'] for i in range(len(sample))]
			text_token = [torch.tensor(sample[i]['text_token']).long() for i in
						  range(len(sample))]
			text_token_len = torch.tensor([i.size(0) for i in text_token],
										  dtype=torch.int32)
			text_token = pad_sequence(text_token, batch_first=True,
									  padding_value=0)
			time_start = torch.tensor(
					[sample[i]['time_start'] for i in range(len(sample))])
			time_end = torch.tensor(
					[sample[i]['time_end'] for i in range(len(sample))])

			if isinstance(sample[0]['chorus'], str):
				chorus = torch.tensor([CHORUS[sample[i]['chorus']] for i in
									   range(len(sample))])
			else:
				chorus = [torch.tensor([CHORUS[t] for t in sample[i]['chorus']])
						  for i in range(len(sample))]
				chorus = pad_sequence(chorus, batch_first=True,
									  padding_value=-1)

			if "acoustic_token" in sample[0]:
				acoustic_token = [
					sample[i]['acoustic_token'].clone().to(torch.int32) for i in
					range(len(sample))]
				acoustic_token_len = torch.tensor(
						[i.size(0) for i in acoustic_token], dtype=torch.int32)
				acoustic_token = pad_sequence(acoustic_token,
											  batch_first=True,
											  padding_value=0)
			else:
				acoustic_token = None
				acoustic_token_len = None

			batch = {
				"utts"              : utts,
				"acoustic_token"    : acoustic_token,
				"acoustic_token_len": acoustic_token_len,
				"time_start"        : time_start,
				"time_end"          : time_end,
				"chorus"            : chorus,
				"text"              : text,
				"text_token"        : text_token,
				"text_token_len"    : text_token_len,
			}

			if "semantic_token" in sample[0]:
				semantic_token = [torch.tensor(sample[i]['semantic_token'][0],
											   dtype=torch.int32) for i in
								  range(len(sample))]
				semantic_token_len = torch.tensor(
						[i.size(0) for i in semantic_token], dtype=torch.int32)
				semantic_token = pad_sequence(semantic_token,
											  batch_first=True,
											  padding_value=0)
				batch.update({"semantic_token"    : semantic_token,
							  "semantic_token_len": semantic_token_len})

			yield batch