Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,843 Bytes
08f69f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import pytorch_lightning as pl
import sys, gc
import random
import torch
import torchaudio
import typing as tp
import wandb
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
from ema_pytorch import EMA
from einops import rearrange
from safetensors.torch import save_file
from torch import optim
from torch.nn import functional as F
from ..inference.sampling import get_alphas_sigmas, sample, sample_discrete_euler
from pytorch_lightning.utilities.rank_zero import rank_zero_only
from ..models.diffusion import DiffusionModelWrapper, ConditionedDiffusionModelWrapper
from ..models.lm import AudioLMContinuousModelWrapper
from .utils import create_optimizer_from_config, create_scheduler_from_config
class AudioLMContinuousModelTrainingWrapper(pl.LightningModule):
def __init__(
self,
model: AudioLanguageModelWrapper,
lr = 1e-4,
diffusion_objective: tp.Literal["rectified_flow", "v"] = "v",
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
use_ema=False,
ema_copy=None,
optimizer_configs: dict = None,
diffusion_batch_mul=4,
pre_encoded=False
):
super().__init__()
self.model = model
self.diffusion = diffusion
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
self.model.pretransform.requires_grad_(False)
self.timestep_sampler = timestep_sampler
self.diffusion_objective = model.diffusion_objective
loss_modules = [
MSELoss("v",
"targets",
weight=1.0,
name="mse_loss"
)
]
self.losses = MultiLoss(loss_modules)
self.model_ema = None
if use_ema:
self.model_ema = EMA(self.model, ema_model=ema_copy, beta=0.99, update_every=10)
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
if optimizer_configs is None:
optimizer_configs = {
"lm": {
"optimizer": {
"type": "AdamW",
"config": {
"lr": lr,
"betas": (0.9, 0.95),
"weight_decay": 0.1
}
}
}
}
else:
if lr is not None:
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
self.optimizer_configs = optimizer_configs
self.diffusion_batch_mul = diffusion_batch_mul
self.pre_encoded = pre_encoded
def configure_optimizers(self):
lm_opt_config = self.optimizer_configs['lm']
opt_lm = create_optimizer_from_config(lm_opt_config['optimizer'], self.model.parameters())
if "scheduler" in lm_opt_config:
sched_lm = create_scheduler_from_config(lm_opt_config['scheduler'], opt_lm)
sched_lm_config = {
"scheduler": sched_lm,
"interval": "step"
}
return [opt_lm], [sched_lm_config]
return [opt_lm]
# Copied and modified from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/solvers/musicgen.py under MIT license
# License can be found in LICENSES/LICENSE_META.txt
def training_step(self, batch, batch_idx):
reals, metadata = batch
if reals.ndim == 4 and reals.shape[0] == 1:
reals = reals[0]
diffusion_input = reals
loss_info = {}
if not self.pre_encoded:
loss_info["audio_reals"] = diffusion_input
if self.diffusion.pretransform is not None:
if not self.pre_encoded:
with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
else:
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
loss_info["reals"] = diffusion_input
padding_masks = []
for md in metadata:
if md["padding_mask"].ndim == 1:
padding_masks.append(md["padding_mask"])
else:
padding_masks.append(md["padding_mask"][0])
padding_masks = torch.stack(padding_masks, dim=0).to(self.device) # Shape (batch_size, sequence_length)
condition_tensors = None
# If the model is conditioned, get the conditioning tensors
if self.model.conditioner is not None:
with torch.cuda.amp.autocast():
condition_tensors = self.model.conditioner(metadata, self.device)
z = self.model.compute_logits(diffusion_input, condition_tensors=condition_tensors, cfg_dropout_prob=0.1)
bsz, seq_len, _ = z.shape
gt_inputs = diffusion_input.clone().detach()
gt_inputs = gt_inputs.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
if self.timestep_sampler == "uniform":
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(z.shape[0])[:, 0].to(self.device)
elif self.timestep_sampler == "logit_normal":
t = torch.sigmoid(torch.randn(z.shape[0], device=self.device))
# Calculate the noise schedule parameters for those timesteps
if self.diffusion_objective == "v":
alphas, sigmas = get_alphas_sigmas(t)
elif self.diffusion_objective == "rectified_flow":
alphas, sigmas = 1-t, t
# Combine the ground truth data and the noise
alphas = alphas[:, None]
sigmas = sigmas[:, None]
noise = torch.randn_like(gt_inputs)
noised_inputs = gt_inputs * alphas + noise * sigmas
if self.diffusion_objective == "v":
targets = noise * alphas - gt_inputs * sigmas
elif self.diffusion_objective == "rectified_flow":
targets = noise - gt_inputs
cond = {}
cond['z'] = z
with torch.cuda.amp.autocast():
v = self.diffusion(noised_inputs, t, cond=cond)
loss_info.update({
"v": v,
"targets": targets
})
loss, losses = self.losses()
log_dict = {
'train/loss': loss.detach(),
'train/std_data': diffusion_input.std(),
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
}
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
if self.model_ema is not None:
self.model_ema.update()
def export_model(self, path, use_safetensors=False):
model = self.model_ema.ema_model if self.model_ema is not None else self.model
if use_safetensors:
save_file(model.state_dict(), path)
else:
torch.save({"state_dict": model.state_dict()}, path)
class AudioLanguageModelDemoCallback(pl.Callback):loss_info
def __init__(self,
demo_every=2000,
num_demos=8,
sample_size=65536,
sample_rate=48000,
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None,
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
**kwargs
):
super().__init__()
self.demo_every = demo_every
self.num_demos = num_demos
self.demo_samples = sample_size
self.sample_rate = sample_rate
self.last_demo_step = -1
self.demo_conditioning = demo_conditioning
self.demo_cfg_scales = demo_cfg_scales
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module: AudioLanguageModelTrainingWrapper, outputs, batch, batch_idx):
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
return
module.eval()
print(f"Generating demo")
self.last_demo_step = trainer.global_step
demo_length_tokens = self.demo_samples // module.model.pretransform.downsampling_ratio
#demo_reals = batch[0][:self.num_demos]
# if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
# demo_reals = demo_reals[0]
#demo_reals_tokens = module.model.pretransform.tokenize(demo_reals)
##Limit to first 50 tokens
#demo_reals_tokens = demo_reals_tokens[:, :, :50]
try:
print("Getting conditioning")
for cfg_scale in self.demo_cfg_scales:
model = module.model # module.model_ema.ema_model if module.model_ema is not None else module.model
print(f"Generating demo for cfg scale {cfg_scale}")
fakes = model.generate_audio(
batch_size=self.num_demos,
max_gen_len=demo_length_tokens,
conditioning=self.demo_conditioning,
#init_data = demo_reals_tokens,
cfg_scale=cfg_scale,
temp=1.0,
top_p=0.95
)
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
fakes = fakes / fakes.abs().max()
fakes = fakes.type(torch.float32).clamp(-1, 1).mul(32767).type(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Reconstructed')
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
trainer.logger.experiment.log(log_dict)
except Exception as e:
raise e
finally:
gc.collect()
torch.cuda.empty_cache()
module.train() |