Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,205 Bytes
052cf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
from pathlib import Path
from typing import Optional, Union
from PIL import Image
import pandas as pd
import torch
import torchaudio
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from torchvision.utils import save_image
from transformers import AutoProcessor
import torch.nn.functional as F
import numpy as np
import logging
log = logging.getLogger()
_CLIP_SIZE = 224
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
class Audio_Text(Dataset):
def __init__(
self,
root: Union[str, Path],
*,
tsv_path: Union[str, Path] = 'dataset/vggsound/split_txt/train_caption.csv',
sample_rate: int = 44_100,
duration_sec: float = 9.0,
audio_samples: Optional[int] = 397312,
normalize_audio: bool = False,
start_row: Optional[int] = None,
end_row: Optional[int] = None,
save_dir: str = 'data/vggsound/video_latents_text/train'
):
self.root = Path(root)
self.normalize_audio = normalize_audio
if audio_samples is None:
self.audio_samples = int(sample_rate * duration_sec)
else:
self.audio_samples = audio_samples
effective_duration = audio_samples / sample_rate
# make sure the duration is close enough, within 15ms
assert abs(effective_duration - duration_sec) < 0.015, \
f'audio_samples {audio_samples} does not match duration_sec {duration_sec}'
# videos = sorted(os.listdir(self.root))
# videos = set([Path(v).stem for v in videos]) # remove extensions
videos = []
self.labels = []
self.videos = []
self.cots = []
missing_videos = []
# read the tsv for subset information
df_list = pd.read_csv(tsv_path, sep=',', dtype={'id': str}).to_dict('records')
# 控制处理的行范围
if start_row is not None and end_row is not None:
df_list = df_list[start_row:end_row]
for record in df_list:
id = record['id']
if os.path.exists(f'{save_dir}/{id}.pth'): continue
label = record['caption']
# if id in videos:
self.labels.append(label)
# print(label,'debug1!!!!!!!!!')
self.cots.append(record['caption_cot'])
# self.labels[id] = label
self.videos.append(id)
# else:
# missing_videos.append(id)
log.info(f'{len(videos)} videos found in {root}')
log.info(f'{len(self.videos)} videos found in {tsv_path}')
log.info(f'{len(missing_videos)} videos missing in {root}')
self.sample_rate = sample_rate
self.duration_sec = duration_sec
self.expected_audio_length = self.audio_samples
self.resampler = {}
def sample(self, idx: int):
video_id = self.videos[idx]
label = self.labels[idx]
cot = self.cots[idx]
audio_path = os.path.join(self.root, f'{video_id}.wav')
if not os.path.exists(audio_path):
audio_path = os.path.join(self.root, f'{video_id}.flac')
if not os.path.exists(audio_path):
raise RuntimeError(f'Audio is not exist {audio_path}')
audio_chunk, sample_rate = torchaudio.load(audio_path)
if len(audio_chunk.shape) != 2:
raise RuntimeError(f'error audio shape {video_id}')
abs_max = audio_chunk[0].abs().max()
if abs_max <= 1e-6:
if audio_chunk.shape[0] > 1 and audio_chunk[1].abs().max() > 1e-6:
audio_chunk = audio_chunk[1:2]
else:
raise RuntimeError(f'Audio is silent {video_id}')
# ensure the stereo audio
if audio_chunk.shape[0] < 2:
audio_chunk = audio_chunk.repeat(2, 1)
elif audio_chunk.shape[0] > 2:
audio_chunk = audio_chunk[:2]
# resample
if sample_rate == self.sample_rate:
audio_chunk = audio_chunk
else:
if sample_rate not in self.resampler:
# https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
self.resampler[sample_rate] = torchaudio.transforms.Resample(
sample_rate,
self.sample_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method='sinc_interp_kaiser',
beta=14.769656459379492,
)
audio_chunk = self.resampler[sample_rate](audio_chunk)
if audio_chunk.shape[1] < self.expected_audio_length:
# zero-padding audio
padding_length = self.expected_audio_length - audio_chunk.shape[1]
# 创建 padding 张量,大小为 [batch_size, padding_length],值为0
padding = torch.zeros(audio_chunk.shape[0], padding_length)
# 将原始音频和 padding 沿第 1 维度拼接在一起
audio_chunk = torch.cat((audio_chunk, padding), dim=1)
# raise RuntimeError(f'Audio too short {video_id}')
audio_chunk = audio_chunk[:,:self.expected_audio_length]
assert audio_chunk.shape == (2, 397312), f'error shape:{video_id},{audio_chunk.shape}'
# print(label,'debug2!!!!!!!!!')
data = {
'id': video_id,
'caption': label,
'caption_cot': cot,
'audio': audio_chunk,
}
return data
def __getitem__(self, idx: int):
try:
return self.sample(idx)
except Exception as e:
log.error(f'Error loading video {self.videos[idx]}: {e}')
return None
def __len__(self):
return len(self.labels)
# dataset = VGGSound(
# root="data/vggsound/video/train",
# tsv_path="data/vggsound/split_txt/temp.csv",
# sample_rate=44100,
# duration_sec=9.0,
# audio_samples=397312,
# start_row=0,
# end_row=None,
# save_dir="data/vggsound/video_224_latents_text/train"
# )
# dataset[0] |