File size: 15,961 Bytes
08f69f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import math
import random
import torch
import torch.nn.functional as F
from torch import nn
from typing import Tuple
import numpy as np

class PadCrop(nn.Module):
    def __init__(self, n_samples, randomize=True):
        super().__init__()
        self.n_samples = n_samples
        self.randomize = randomize

    def __call__(self, signal):
        n, s = signal.shape
        start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
        end = start + self.n_samples
        output = signal.new_zeros([n, self.n_samples])
        output[:, :min(s, self.n_samples)] = signal[:, start:end]
        return output

class PadCrop_Normalized_T(nn.Module):
    
    def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True):
        
        super().__init__()
        
        self.n_samples = n_samples
        self.sample_rate = sample_rate
        self.randomize = randomize

    def __call__(self, source: torch.Tensor, randomize=True) -> Tuple[torch.Tensor, float, float, int, int]:

        n_channels, n_samples = source.shape
        
        # If the audio is shorter than the desired length, pad it
        upper_bound = max(0, n_samples - self.n_samples)
        
        # If randomize is False, always start at the beginning of the audio
        offset = 0
        if(randomize and n_samples > self.n_samples):
            offset = random.randint(0, upper_bound)

        # Calculate the start and end times of the chunk
        t_start = offset / (upper_bound + self.n_samples)
        t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)

        # Create the chunk
        chunk = source.new_zeros([n_channels, self.n_samples])

        # Copy the audio into the chunk
        chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples]
        
        # Calculate the start and end times of the chunk in seconds
        seconds_start = math.floor(offset / self.sample_rate)
        seconds_total = math.ceil(n_samples / self.sample_rate)

        # Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
        padding_mask = torch.zeros([self.n_samples])
        padding_mask[:min(n_samples, self.n_samples)] = 1
        
        
        return (
            chunk,
            t_start,
            t_end,
            seconds_start,
            seconds_total,
            padding_mask
        )

class PadCrop_Video_Normalized_T(nn.Module):
    
    def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
        
        super().__init__()
        
        self.n_samples = n_samples
        self.sample_rate = sample_rate
        self.randomize = randomize
        self.fps = fps
        self.n_frames = int(self.fps * self.n_samples / self.sample_rate)

    def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
        n_channels, n_samples = audio.shape
        # print(video.shape)
        n_frames, dim = video.shape
        if not torch.is_tensor(video):
            video = torch.from_numpy(video)
        # If the audio is shorter than the desired length, pad it
        audio_upper_bound = max(0, n_samples - self.n_samples)
        video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
        upper_bound = min(audio_upper_bound,video_upper_bound)
        
        # If randomize is False, always start at the beginning of the audio
        offset = 0
        if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
            offset = random.randint(0, upper_bound)

        # Calculate the start and end times of the chunk
        t_start = offset / (upper_bound + self.n_samples)
        t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
        frame_offset = int(self.fps * offset / self.sample_rate)
        # frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
        # Create the chunk
        chunk = audio.new_zeros([n_channels, self.n_samples])
        video_chunk = video.new_zeros([self.n_frames, video.shape[1]])
        # Copy the audio into the chunk
        chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
        video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames,:]
        # Calculate the start and end times of the chunk in seconds
        seconds_start = math.floor(offset / self.sample_rate)
        seconds_total = math.ceil(n_samples / self.sample_rate)

        # Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
        padding_mask = torch.zeros([self.n_samples])
        padding_mask[:min(n_samples, self.n_samples)] = 1
        
        
        return (
            chunk,
            video_chunk,
            t_start,
            t_end,
            seconds_start,
            seconds_total,
            padding_mask
        )

class PadCrop_Video_Image_Normalized_T(nn.Module):
    
    def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
        
        super().__init__()
        
        self.n_samples = n_samples
        self.sample_rate = sample_rate
        self.randomize = randomize
        self.fps = fps
        self.n_frames = int(self.fps * self.n_samples / self.sample_rate)

    def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
        n_channels, n_samples = audio.shape
        # import ipdb
        # ipdb.set_trace()
        n_frames, channel, width, height= video.shape
        video = torch.from_numpy(video)
        # If the audio is shorter than the desired length, pad it
        audio_upper_bound = max(0, n_samples - self.n_samples)
        video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
        upper_bound = min(audio_upper_bound,video_upper_bound)
        
        # If randomize is False, always start at the beginning of the audio
        offset = 0
        if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
            offset = random.randint(0, upper_bound)

        # Calculate the start and end times of the chunk
        t_start = offset / (upper_bound + self.n_samples)
        t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
        frame_offset = int(self.fps * offset / self.sample_rate)
        # frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
        # Create the chunk
        chunk = audio.new_zeros([n_channels, self.n_samples])
        video_chunk = video.new_zeros([self.n_frames, channel, width, height])
        # Copy the audio into the chunk
        chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
        video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames]
        # Calculate the start and end times of the chunk in seconds
        seconds_start = math.floor(offset / self.sample_rate)
        seconds_total = math.ceil(n_samples / self.sample_rate)

        # Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
        padding_mask = torch.zeros([self.n_samples])
        padding_mask[:min(n_samples, self.n_samples)] = 1
        
        
        return (
            chunk,
            video_chunk,
            t_start,
            t_end,
            seconds_start,
            seconds_total,
            padding_mask
        )

class PadCrop_Video_Hiera_Normalized_T(nn.Module):
    
    def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
        
        super().__init__()
        
        self.n_samples = n_samples
        self.sample_rate = sample_rate
        self.randomize = randomize
        self.fps = fps
        self.n_frames = int(self.fps * self.n_samples / self.sample_rate)

    def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:

        n_channels, n_samples = audio.shape
        n_frames, heigh, width, channel = video.shape
        video = torch.from_numpy(video)
        # If the audio is shorter than the desired length, pad it
        audio_upper_bound = max(0, n_samples - self.n_samples)
        video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
        upper_bound = min(audio_upper_bound,video_upper_bound)
        
        # If randomize is False, always start at the beginning of the audio
        offset = 0
        if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
            offset = random.randint(0, upper_bound)

        # Calculate the start and end times of the chunk
        t_start = offset / (upper_bound + self.n_samples)
        t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
        frame_offset = int(self.fps * offset / self.sample_rate)
        # frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
        # Create the chunk
        chunk = audio.new_zeros([n_channels, self.n_samples])
        video_chunk = video.new_zeros([self.n_frames, heigh, width, channel])
        # Copy the audio into the chunk
        chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
        video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames]
        # video_chunk = video_chunk[None].permute(0, 4, 1, 2, 3).contiguous()
        # print(video_chunk.shape)
        # video_chunk = F.interpolate(
        #     video_chunk[0],
        #     size=(224, 224, 3),  # 输出的空间尺寸
        #     scale_factor=(target_frames / video_tensor.shape[1], 1, 1),  # 时间轴的缩放因子
        #     mode='trilinear',  # 使用三线性插值
        #     align_corners=False
        # )

        # video_chunk = F.interpolate(video_chunk, size=(64, 224, 224), mode="trilinear")[0]
        # video_chunk = video_chunk.view(3,4,16,224,224).transpose(0,1)
        # Calculate the start and end times of the chunk in seconds
        seconds_start = math.floor(offset / self.sample_rate)
        seconds_total = math.ceil(n_samples / self.sample_rate)

        # Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
        padding_mask = torch.zeros([self.n_samples])
        padding_mask[:min(n_samples, self.n_samples)] = 1
        
        
        return (
            chunk,
            video_chunk,
            t_start,
            t_end,
            seconds_start,
            seconds_total,
            padding_mask
        )

class PadCrop_DualVideo_Normalized_T(nn.Module):
    
    def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
        
        super().__init__()
        
        self.n_samples = n_samples
        self.sample_rate = sample_rate
        self.randomize = randomize
        self.fps = fps
        self.n_frames = int(self.fps * self.n_samples / self.sample_rate)

    def __call__(self, audio: torch.Tensor, video_360: torch.Tensor, video_fov: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
        n_channels, n_samples = audio.shape
        # print(video.shape)
        n_frames, dim = video_360.shape
        video_360 = torch.from_numpy(video_360)
        video_fov = torch.from_numpy(video_fov)
        # If the audio is shorter than the desired length, pad it
        audio_upper_bound = max(0, n_samples - self.n_samples)
        video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
        upper_bound = min(audio_upper_bound,video_upper_bound)
        
        # If randomize is False, always start at the beginning of the audio
        offset = 0
        if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
            offset = random.randint(0, upper_bound)

        # Calculate the start and end times of the chunk
        t_start = offset / (upper_bound + self.n_samples)
        t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
        frame_offset = int(self.fps * offset / self.sample_rate)
        # frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
        # Create the chunk
        chunk = audio.new_zeros([n_channels, self.n_samples])
        video_360_chunk = video_360.new_zeros([self.n_frames, video_360.shape[1]])
        video_fov_chunk = video_fov.new_zeros([self.n_frames, video_fov.shape[1]])
        # Copy the audio into the chunk
        chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
        video_360_chunk[:min(n_frames, self.n_frames)] = video_360[frame_offset:frame_offset + self.n_frames,:]
        video_fov_chunk[:min(n_frames, self.n_frames)] = video_fov[frame_offset:frame_offset + self.n_frames,:]
        # Calculate the start and end times of the chunk in seconds
        seconds_start = math.floor(offset / self.sample_rate)
        seconds_total = math.ceil(n_samples / self.sample_rate)

        # Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
        padding_mask = torch.zeros([self.n_samples])
        padding_mask[:min(n_samples, self.n_samples)] = 1
        
        
        return (
            chunk,
            video_360_chunk,
            video_fov_chunk,
            t_start,
            t_end,
            seconds_start,
            seconds_total,
            padding_mask
        )

class PhaseFlipper(nn.Module):
    "Randomly invert the phase of a signal"
    def __init__(self, p=0.5):
        super().__init__()
        self.p = p
    def __call__(self, signal):
        return -signal if (random.random() < self.p) else signal
        
class Mono(nn.Module):
  def __call__(self, signal):
    return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal

class Stereo(nn.Module):
  def __call__(self, signal):
    signal_shape = signal.shape
    # Check if it's mono
    if len(signal_shape) == 1: # s -> 2, s
        signal = signal.unsqueeze(0).repeat(2, 1)
    elif len(signal_shape) == 2:
        if signal_shape[0] == 1: #1, s -> 2, s
            signal = signal.repeat(2, 1)
        elif signal_shape[0] > 2: #?, s -> 2,s
            signal = signal[:2, :]    

    return signal

class FOA(nn.Module):
  def __call__(self, signal):
    signal_shape = signal.shape
    # Check if it's mono
    if len(signal_shape) == 1:  # s -> (4, s)
        foa = torch.zeros(4, signal_shape[0], device=signal.device)  # 与输入信号一致的设备类型
        foa[0, :] = signal  # W通道: 全方位声源
        foa[1, :] = 0  # X通道
        foa[2, :] = 0  # Y通道
        foa[3, :] = 0  # Z通道
    elif len(signal_shape) == 2:
        foa = torch.zeros(4, signal_shape[1], device=signal.device)  # 与输入信号一致的设备类型
        if signal_shape[0] == 1:  # (1, s) -> (4, s)
            foa[0, :] = signal[0]  # W通道: 全方位声源
            foa[1, :] = 0  # X通道
            foa[2, :] = 0  # Y通道
            foa[3, :] = 0  # Z通道
        elif signal_shape[0] == 2:  # (2, s) -> (4, s)
            left = signal[0]
            right = signal[1]
            # 将立体声信号映射到FOA信号通道
            foa[0, :] = (left + right) / np.sqrt(2)  # W通道: 全方位声源
            foa[1,  :] = (left - right) / np.sqrt(2)  # X通道: 前后方向
            foa[2, :] = 0  # Y通道: 左右方向,简单实现先置零
            foa[3, :] = 0  # Z通道: 垂直方向,这里置零
        else:
            foa = signal

    else:
        raise ValueError(f"Unsupported signal shape: {signal_shape}")

    assert foa.shape[0] == 4, f'inputs not FOA format'

    return foa