Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,862 Bytes
052cf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
from pathlib import Path
from typing import Optional, Union
from PIL import Image
import pandas as pd
import torch
import torchaudio
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from torchvision.utils import save_image
from transformers import AutoProcessor
import torch.nn.functional as F
import numpy as np
import logging
log = logging.getLogger()
_CLIP_SIZE = 224
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
def save_tensor_as_image(tensor, save_path):
"""
将形状为 (1, 3, H, W) 的 RGB 图像数组保存为图片文件。
:param tensor: 输入的 NumPy 数组 (1, 3, H, W)。
:param save_path: 图片保存路径。
"""
# # 移除批次维度,变成 (3, H, W)
# tensor = tensor.squeeze(0)
# 交换轴顺序,变为 (H, W, 3)
image_array = np.transpose(tensor, (1, 2, 0))
# 检查数组是否为合适的数据类型
if image_array.dtype != np.uint8:
# 如果不是 uint8,首先标准化,然后转换
image_array = (image_array - image_array.min()) / (image_array.max() - image_array.min()) * 255
image_array = image_array.astype(np.uint8)
# 创建图像对象
image = Image.fromarray(image_array)
# 保存图片
image.save(save_path)
print(f"Image saved to {save_path}")
def pad_to_square(video_tensor):
# 验证输入的形状
if len(video_tensor.shape) != 4:
raise ValueError("Input tensor must have shape (l, c, h, w)")
l, c, h, w = video_tensor.shape
max_side = max(h, w)
# 计算每一维度需要的填充量:(left, right, top, bottom)
pad_h = max_side - h
pad_w = max_side - w
# 创建padding tuple (left, right, top, bottom)
# 因为图像的填充是作用在最后两个维度 h 和 w 上,所以我们需要指定这两个维度的填充
padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)
# 使用F.pad对视频张量进行填充操作
# 填充参数为 (left, right, top, bottom)
video_padded = F.pad(video_tensor, pad=padding, mode='constant', value=0)
return video_padded
class VGGSound(Dataset):
def __init__(
self,
root: Union[str, Path],
*,
tsv_path: Union[str, Path] = 'dataset/vggsound/split_txt/train_caption.csv',
sample_rate: int = 44_100,
duration_sec: float = 9.0,
audio_samples: Optional[int] = 397312,
normalize_audio: bool = False,
start_row: Optional[int] = None,
end_row: Optional[int] = None,
save_dir: str = 'data/vggsound/video_latents_text/train'
):
self.root = Path(root)
self.normalize_audio = normalize_audio
if audio_samples is None:
self.audio_samples = int(sample_rate * duration_sec)
else:
self.audio_samples = audio_samples
effective_duration = audio_samples / sample_rate
# make sure the duration is close enough, within 15ms
assert abs(effective_duration - duration_sec) < 0.015, \
f'audio_samples {audio_samples} does not match duration_sec {duration_sec}'
# videos = sorted(os.listdir(self.root))
# videos = set([Path(v).stem for v in videos]) # remove extensions
videos = []
self.labels = []
self.videos = []
missing_videos = []
# read the tsv for subset information
df_list = pd.read_csv(tsv_path, sep=',', dtype={'id': str}).to_dict('records')
# 控制处理的行范围
if start_row is not None and end_row is not None:
df_list = df_list[start_row:end_row]
for record in df_list:
id = record['id']
if os.path.exists(f'{save_dir}/{id}.pth'): continue
label = record['label']
# if id in videos:
self.labels.append(label)
# self.labels[id] = label
self.videos.append(id)
# else:
# missing_videos.append(id)
log.info(f'{len(videos)} videos found in {root}')
log.info(f'{len(self.videos)} videos found in {tsv_path}')
log.info(f'{len(missing_videos)} videos missing in {root}')
self.sample_rate = sample_rate
self.duration_sec = duration_sec
self.expected_audio_length = self.audio_samples
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
self.clip_transform = v2.Compose([
v2.Lambda(pad_to_square), # 先填充为正方形
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
self.clip_processor = AutoProcessor.from_pretrained("useful_ckpts/metaclip-huge")
self.resampler = {}
def sample(self, idx: int) -> dict[str, torch.Tensor]:
video_id = self.videos[idx]
label = self.labels[idx]
reader = StreamingMediaDecoder(self.root / (video_id + '.mp4'))
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
if clip_chunk is None:
raise RuntimeError(f'CLIP video returned None {video_id}')
# truncate the video
clip_chunk = clip_chunk[:self.clip_expected_length]
# import ipdb
# ipdb.set_trace()
if clip_chunk.shape[0] != self.clip_expected_length:
current_length = clip_chunk.shape[0]
padding_needed = self.clip_expected_length - current_length
# Check that padding needed is no more than 2
assert padding_needed < 4, f'Padding no more than 2 frames allowed, but {padding_needed} needed'
# If assertion passes, proceed with padding
if padding_needed > 0:
last_frame = clip_chunk[-1]
log.info(last_frame.shape)
# Repeat the last frame to reach the expected length
padding = last_frame.repeat(padding_needed, 1, 1, 1)
clip_chunk = torch.cat((clip_chunk, padding), dim=0)
# raise RuntimeError(f'CLIP video wrong length {video_id}, '
# f'expected {self.clip_expected_length}, '
# f'got {clip_chunk.shape[0]}')
# save_image(clip_chunk[0] / 255.0,'ori.png')
clip_chunk = pad_to_square(clip_chunk)
# save_image(clip_chunk[0] / 255.0,'square.png')
# clip_chunk = self.clip_transform(clip_chunk)
# import ipdb
# ipdb.set_trace()
clip_chunk = self.clip_processor(images=clip_chunk, return_tensors="pt")["pixel_values"]
data = {
'id': video_id,
'caption': label,
'clip_video': clip_chunk,
}
return data
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
try:
return self.sample(idx)
except Exception as e:
log.error(f'Error loading video {self.videos[idx]}: {e}')
return None
def __len__(self):
return len(self.labels)
# dataset = VGGSound(
# root="data/vggsound/video/train",
# tsv_path="data/vggsound/split_txt/temp.csv",
# sample_rate=44100,
# duration_sec=9.0,
# audio_samples=397312,
# start_row=0,
# end_row=None,
# save_dir="data/vggsound/video_224_latents_text/train"
# )
# dataset[0] |