Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import random | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from typing import Tuple | |
import numpy as np | |
class PadCrop(nn.Module): | |
def __init__(self, n_samples, randomize=True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.randomize = randomize | |
def __call__(self, signal): | |
n, s = signal.shape | |
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item() | |
end = start + self.n_samples | |
output = signal.new_zeros([n, self.n_samples]) | |
output[:, :min(s, self.n_samples)] = signal[:, start:end] | |
return output | |
class PadCrop_Normalized_T(nn.Module): | |
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.sample_rate = sample_rate | |
self.randomize = randomize | |
def __call__(self, source: torch.Tensor, randomize=True) -> Tuple[torch.Tensor, float, float, int, int]: | |
n_channels, n_samples = source.shape | |
# If the audio is shorter than the desired length, pad it | |
upper_bound = max(0, n_samples - self.n_samples) | |
# If randomize is False, always start at the beginning of the audio | |
offset = 0 | |
if(randomize and n_samples > self.n_samples): | |
offset = random.randint(0, upper_bound) | |
# Calculate the start and end times of the chunk | |
t_start = offset / (upper_bound + self.n_samples) | |
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) | |
# Create the chunk | |
chunk = source.new_zeros([n_channels, self.n_samples]) | |
# Copy the audio into the chunk | |
chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples] | |
# Calculate the start and end times of the chunk in seconds | |
seconds_start = math.floor(offset / self.sample_rate) | |
seconds_total = math.ceil(n_samples / self.sample_rate) | |
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't | |
padding_mask = torch.zeros([self.n_samples]) | |
padding_mask[:min(n_samples, self.n_samples)] = 1 | |
return ( | |
chunk, | |
t_start, | |
t_end, | |
seconds_start, | |
seconds_total, | |
padding_mask | |
) | |
class PadCrop_Video_Normalized_T(nn.Module): | |
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.sample_rate = sample_rate | |
self.randomize = randomize | |
self.fps = fps | |
self.n_frames = int(self.fps * self.n_samples / self.sample_rate) | |
def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]: | |
n_channels, n_samples = audio.shape | |
# print(video.shape) | |
n_frames, dim = video.shape | |
if not torch.is_tensor(video): | |
video = torch.from_numpy(video) | |
# If the audio is shorter than the desired length, pad it | |
audio_upper_bound = max(0, n_samples - self.n_samples) | |
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps) | |
upper_bound = min(audio_upper_bound,video_upper_bound) | |
# If randomize is False, always start at the beginning of the audio | |
offset = 0 | |
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames): | |
offset = random.randint(0, upper_bound) | |
# Calculate the start and end times of the chunk | |
t_start = offset / (upper_bound + self.n_samples) | |
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) | |
frame_offset = int(self.fps * offset / self.sample_rate) | |
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate) | |
# Create the chunk | |
chunk = audio.new_zeros([n_channels, self.n_samples]) | |
video_chunk = video.new_zeros([self.n_frames, video.shape[1]]) | |
# Copy the audio into the chunk | |
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples] | |
video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames,:] | |
# Calculate the start and end times of the chunk in seconds | |
seconds_start = math.floor(offset / self.sample_rate) | |
seconds_total = math.ceil(n_samples / self.sample_rate) | |
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't | |
padding_mask = torch.zeros([self.n_samples]) | |
padding_mask[:min(n_samples, self.n_samples)] = 1 | |
return ( | |
chunk, | |
video_chunk, | |
t_start, | |
t_end, | |
seconds_start, | |
seconds_total, | |
padding_mask | |
) | |
class PadCrop_Video_Image_Normalized_T(nn.Module): | |
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.sample_rate = sample_rate | |
self.randomize = randomize | |
self.fps = fps | |
self.n_frames = int(self.fps * self.n_samples / self.sample_rate) | |
def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]: | |
n_channels, n_samples = audio.shape | |
# import ipdb | |
# ipdb.set_trace() | |
n_frames, channel, width, height= video.shape | |
video = torch.from_numpy(video) | |
# If the audio is shorter than the desired length, pad it | |
audio_upper_bound = max(0, n_samples - self.n_samples) | |
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps) | |
upper_bound = min(audio_upper_bound,video_upper_bound) | |
# If randomize is False, always start at the beginning of the audio | |
offset = 0 | |
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames): | |
offset = random.randint(0, upper_bound) | |
# Calculate the start and end times of the chunk | |
t_start = offset / (upper_bound + self.n_samples) | |
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) | |
frame_offset = int(self.fps * offset / self.sample_rate) | |
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate) | |
# Create the chunk | |
chunk = audio.new_zeros([n_channels, self.n_samples]) | |
video_chunk = video.new_zeros([self.n_frames, channel, width, height]) | |
# Copy the audio into the chunk | |
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples] | |
video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames] | |
# Calculate the start and end times of the chunk in seconds | |
seconds_start = math.floor(offset / self.sample_rate) | |
seconds_total = math.ceil(n_samples / self.sample_rate) | |
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't | |
padding_mask = torch.zeros([self.n_samples]) | |
padding_mask[:min(n_samples, self.n_samples)] = 1 | |
return ( | |
chunk, | |
video_chunk, | |
t_start, | |
t_end, | |
seconds_start, | |
seconds_total, | |
padding_mask | |
) | |
class PadCrop_Video_Hiera_Normalized_T(nn.Module): | |
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.sample_rate = sample_rate | |
self.randomize = randomize | |
self.fps = fps | |
self.n_frames = int(self.fps * self.n_samples / self.sample_rate) | |
def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]: | |
n_channels, n_samples = audio.shape | |
n_frames, heigh, width, channel = video.shape | |
video = torch.from_numpy(video) | |
# If the audio is shorter than the desired length, pad it | |
audio_upper_bound = max(0, n_samples - self.n_samples) | |
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps) | |
upper_bound = min(audio_upper_bound,video_upper_bound) | |
# If randomize is False, always start at the beginning of the audio | |
offset = 0 | |
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames): | |
offset = random.randint(0, upper_bound) | |
# Calculate the start and end times of the chunk | |
t_start = offset / (upper_bound + self.n_samples) | |
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) | |
frame_offset = int(self.fps * offset / self.sample_rate) | |
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate) | |
# Create the chunk | |
chunk = audio.new_zeros([n_channels, self.n_samples]) | |
video_chunk = video.new_zeros([self.n_frames, heigh, width, channel]) | |
# Copy the audio into the chunk | |
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples] | |
video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames] | |
# video_chunk = video_chunk[None].permute(0, 4, 1, 2, 3).contiguous() | |
# print(video_chunk.shape) | |
# video_chunk = F.interpolate( | |
# video_chunk[0], | |
# size=(224, 224, 3), # 输出的空间尺寸 | |
# scale_factor=(target_frames / video_tensor.shape[1], 1, 1), # 时间轴的缩放因子 | |
# mode='trilinear', # 使用三线性插值 | |
# align_corners=False | |
# ) | |
# video_chunk = F.interpolate(video_chunk, size=(64, 224, 224), mode="trilinear")[0] | |
# video_chunk = video_chunk.view(3,4,16,224,224).transpose(0,1) | |
# Calculate the start and end times of the chunk in seconds | |
seconds_start = math.floor(offset / self.sample_rate) | |
seconds_total = math.ceil(n_samples / self.sample_rate) | |
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't | |
padding_mask = torch.zeros([self.n_samples]) | |
padding_mask[:min(n_samples, self.n_samples)] = 1 | |
return ( | |
chunk, | |
video_chunk, | |
t_start, | |
t_end, | |
seconds_start, | |
seconds_total, | |
padding_mask | |
) | |
class PadCrop_DualVideo_Normalized_T(nn.Module): | |
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.sample_rate = sample_rate | |
self.randomize = randomize | |
self.fps = fps | |
self.n_frames = int(self.fps * self.n_samples / self.sample_rate) | |
def __call__(self, audio: torch.Tensor, video_360: torch.Tensor, video_fov: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]: | |
n_channels, n_samples = audio.shape | |
# print(video.shape) | |
n_frames, dim = video_360.shape | |
video_360 = torch.from_numpy(video_360) | |
video_fov = torch.from_numpy(video_fov) | |
# If the audio is shorter than the desired length, pad it | |
audio_upper_bound = max(0, n_samples - self.n_samples) | |
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps) | |
upper_bound = min(audio_upper_bound,video_upper_bound) | |
# If randomize is False, always start at the beginning of the audio | |
offset = 0 | |
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames): | |
offset = random.randint(0, upper_bound) | |
# Calculate the start and end times of the chunk | |
t_start = offset / (upper_bound + self.n_samples) | |
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) | |
frame_offset = int(self.fps * offset / self.sample_rate) | |
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate) | |
# Create the chunk | |
chunk = audio.new_zeros([n_channels, self.n_samples]) | |
video_360_chunk = video_360.new_zeros([self.n_frames, video_360.shape[1]]) | |
video_fov_chunk = video_fov.new_zeros([self.n_frames, video_fov.shape[1]]) | |
# Copy the audio into the chunk | |
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples] | |
video_360_chunk[:min(n_frames, self.n_frames)] = video_360[frame_offset:frame_offset + self.n_frames,:] | |
video_fov_chunk[:min(n_frames, self.n_frames)] = video_fov[frame_offset:frame_offset + self.n_frames,:] | |
# Calculate the start and end times of the chunk in seconds | |
seconds_start = math.floor(offset / self.sample_rate) | |
seconds_total = math.ceil(n_samples / self.sample_rate) | |
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't | |
padding_mask = torch.zeros([self.n_samples]) | |
padding_mask[:min(n_samples, self.n_samples)] = 1 | |
return ( | |
chunk, | |
video_360_chunk, | |
video_fov_chunk, | |
t_start, | |
t_end, | |
seconds_start, | |
seconds_total, | |
padding_mask | |
) | |
class PhaseFlipper(nn.Module): | |
"Randomly invert the phase of a signal" | |
def __init__(self, p=0.5): | |
super().__init__() | |
self.p = p | |
def __call__(self, signal): | |
return -signal if (random.random() < self.p) else signal | |
class Mono(nn.Module): | |
def __call__(self, signal): | |
return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal | |
class Stereo(nn.Module): | |
def __call__(self, signal): | |
signal_shape = signal.shape | |
# Check if it's mono | |
if len(signal_shape) == 1: # s -> 2, s | |
signal = signal.unsqueeze(0).repeat(2, 1) | |
elif len(signal_shape) == 2: | |
if signal_shape[0] == 1: #1, s -> 2, s | |
signal = signal.repeat(2, 1) | |
elif signal_shape[0] > 2: #?, s -> 2,s | |
signal = signal[:2, :] | |
return signal | |
class FOA(nn.Module): | |
def __call__(self, signal): | |
signal_shape = signal.shape | |
# Check if it's mono | |
if len(signal_shape) == 1: # s -> (4, s) | |
foa = torch.zeros(4, signal_shape[0], device=signal.device) # 与输入信号一致的设备类型 | |
foa[0, :] = signal # W通道: 全方位声源 | |
foa[1, :] = 0 # X通道 | |
foa[2, :] = 0 # Y通道 | |
foa[3, :] = 0 # Z通道 | |
elif len(signal_shape) == 2: | |
foa = torch.zeros(4, signal_shape[1], device=signal.device) # 与输入信号一致的设备类型 | |
if signal_shape[0] == 1: # (1, s) -> (4, s) | |
foa[0, :] = signal[0] # W通道: 全方位声源 | |
foa[1, :] = 0 # X通道 | |
foa[2, :] = 0 # Y通道 | |
foa[3, :] = 0 # Z通道 | |
elif signal_shape[0] == 2: # (2, s) -> (4, s) | |
left = signal[0] | |
right = signal[1] | |
# 将立体声信号映射到FOA信号通道 | |
foa[0, :] = (left + right) / np.sqrt(2) # W通道: 全方位声源 | |
foa[1, :] = (left - right) / np.sqrt(2) # X通道: 前后方向 | |
foa[2, :] = 0 # Y通道: 左右方向,简单实现先置零 | |
foa[3, :] = 0 # Z通道: 垂直方向,这里置零 | |
else: | |
foa = signal | |
else: | |
raise ValueError(f"Unsupported signal shape: {signal_shape}") | |
assert foa.shape[0] == 4, f'inputs not FOA format' | |
return foa |