UncleWang233's picture
init
08f69f6
raw
history blame
7.33 kB
import torch
import os
from torch import nn, Tensor, einsum, IntTensor, FloatTensor, BoolTensor
import random
def get_rank():
"""Get rank of current process."""
print(os.environ.keys())
if "SLURM_PROCID" in os.environ:
return int(os.environ["SLURM_PROCID"])
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
return 0
return torch.distributed.get_rank()
class InverseLR(torch.optim.lr_scheduler._LRScheduler):
"""Implements an inverse decay learning rate schedule with an optional exponential
warmup. When last_epoch=-1, sets initial lr as lr.
inv_gamma is the number of steps/epochs required for the learning rate to decay to
(1 / 2)**power of its original value.
Args:
optimizer (Optimizer): Wrapped optimizer.
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
power (float): Exponential factor of learning rate decay. Default: 1.
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
Default: 0.
final_lr (float): The final learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
"""
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., final_lr=0.,
last_epoch=-1, verbose=False):
self.inv_gamma = inv_gamma
self.power = power
if not 0. <= warmup < 1:
raise ValueError('Invalid value for warmup')
self.warmup = warmup
self.final_lr = final_lr
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
import warnings
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.")
return self._get_closed_form_lr()
def _get_closed_form_lr(self):
warmup = 1 - self.warmup ** (self.last_epoch + 1)
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
return [warmup * max(self.final_lr, base_lr * lr_mult)
for base_lr in self.base_lrs]
def copy_state_dict(model, state_dict):
"""Load state_dict to model, but only for keys that match exactly.
Args:
model (nn.Module): model to load state_dict.
state_dict (OrderedDict): state_dict to load.
"""
model_state_dict = model.state_dict()
# 创建一个列表存储不匹配的参数
missing_keys = []
unexpected_keys = []
# 手动加载并检查不匹配的参数
for key in state_dict:
if key not in model_state_dict:
unexpected_keys.append(key)
elif state_dict[key].shape != model_state_dict[key].shape:
unexpected_keys.append(key)
for key in model_state_dict:
if key not in state_dict:
missing_keys.append(key)
# 打印不匹配的参数
print("Missing keys in state_dict:", missing_keys)
print("Unexpected keys in state_dict:", unexpected_keys)
for key in state_dict:
if key in model_state_dict and state_dict[key].shape == model_state_dict[key].shape:
if isinstance(state_dict[key], torch.nn.Parameter):
# backwards compatibility for serialized parameters
state_dict[key] = state_dict[key].data
model_state_dict[key] = state_dict[key]
model.load_state_dict(model_state_dict, strict=False)
def create_optimizer_from_config(optimizer_config, parameters):
"""Create optimizer from config.
Args:
parameters (iterable): parameters to optimize.
optimizer_config (dict): optimizer config.
Returns:
torch.optim.Optimizer: optimizer.
"""
optimizer_type = optimizer_config["type"]
if optimizer_type == "FusedAdam":
from deepspeed.ops.adam import FusedAdam
optimizer = FusedAdam(parameters, **optimizer_config["config"])
else:
optimizer_fn = getattr(torch.optim, optimizer_type)
optimizer = optimizer_fn(parameters, **optimizer_config["config"])
return optimizer
def create_scheduler_from_config(scheduler_config, optimizer):
"""Create scheduler from config.
Args:
scheduler_config (dict): scheduler config.
optimizer (torch.optim.Optimizer): optimizer.
Returns:
torch.optim.lr_scheduler._LRScheduler: scheduler.
"""
if scheduler_config["type"] == "InverseLR":
scheduler_fn = InverseLR
else:
scheduler_fn = getattr(torch.optim.lr_scheduler, scheduler_config["type"])
scheduler = scheduler_fn(optimizer, **scheduler_config["config"])
return scheduler
# mask construction helpers
def mask_from_start_end_indices(
seq_len: int,
start: Tensor,
end: Tensor
):
assert start.shape == end.shape
device = start.device
seq = torch.arange(seq_len, device = device, dtype = torch.long)
seq = seq.reshape(*((-1,) * start.ndim), seq_len)
seq = seq.expand(*start.shape, seq_len)
mask = seq >= start[..., None].long()
mask &= seq < end[..., None].long()
return mask
def mask_from_frac_lengths(
seq_len: int,
frac_lengths: Tensor
):
device = frac_lengths.device
lengths = (frac_lengths * seq_len).long()
max_start = seq_len - lengths
rand = torch.zeros_like(frac_lengths, device = device).float().uniform_(0, 1)
start = (max_start * rand).clamp(min = 0)
end = start + lengths
return mask_from_start_end_indices(seq_len, start, end)
def generate_mask(batch_size, seq_len, frac_lengths, min_span_len):
# 计算需要掩盖的起始数量
n_mask = (frac_lengths * seq_len // min_span_len).long() # 每个 span 为 10
# 初始化掩码张量,初始为全 0(未掩盖)
mask_tensor = torch.zeros((batch_size, seq_len), device=frac_lengths.device, dtype=torch.bool)
for b in range(batch_size):
# 随机挑选起始帧
start_frames = random.sample(range(0, seq_len - min_span_len + 1), n_mask[b]) # 0 到 seq_len-10 的范围
for start in start_frames:
# 将 span 为 10 的区域标记为 1(掩盖)
mask_tensor[b, start:start + 10] = 1.0
return mask_tensor
def generate_channel_mask(diffusion_input):
# 如果 r_drop 小于 threshold,则对每个样本选择一个随机声道进行完全 mask
batchsize, num_channels, dim = diffusion_input.shape
for i in range(batchsize):
channel_means = torch.mean(torch.abs(diffusion_input[i]), dim=1) # Mean of the absolute values for each channel
# Determine if any channel is 'small enough'
if torch.all(channel_means > 0.01):
# If all channels are not 'small enough', apply the mask
channel = torch.randint(num_channels, (1,)).item()
diffusion_input[i, channel, :] = 1e-8 # Mask the channel by setting its values
else:
# Optionally log that at least one channel is 'small enough' and no mask is applied
print(f"Sample {i}: At least one channel is 'small enough', skipping masking.")
return diffusion_input