ThinkSound / think_sound /models /conditioners.py
UncleWang233's picture
init
08f69f6
raw
history blame
39.3 kB
#Heavily influenced by https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conditioners.py
import torch
import logging, warnings
import string
import typing as tp
import gc
from typing import Literal, Optional
import os
from .adp import NumberEmbedder
from ..inference.utils import set_audio_channels
from .factory import create_pretransform_from_config
from .pretransforms import Pretransform
from ..training.utils import copy_state_dict
from .utils import load_ckpt_state_dict
import numpy as np
from einops import rearrange
from transformers import AutoProcessor, AutoModel
from torch import nn
class Conditioner(nn.Module):
def __init__(
self,
dim: int,
output_dim: int,
project_out: bool = False
):
super().__init__()
self.dim = dim
self.output_dim = output_dim
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
def forward(self, x: tp.Any) -> tp.Any:
raise NotImplementedError()
class VideoHieraConditioner(Conditioner):
def __init__(self,
output_dim: int,
hiera_ckpt_path,
project_out: bool = False,
finetune: bool = False):
super().__init__(768, output_dim, project_out=project_out)
self.finetune = finetune
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
from hiera import Hiera
import hiera
# model = hiera.hiera_base_16x224(pretrained=True, checkpoint="useful_ckpts/hiera_base_224.mae_in1k_ft_in1k")
model = Hiera(
num_classes=400, # K400 has 400 classes
input_size=(64, 224, 224),
q_stride=[(1, 4, 4),(1,7,7),(1,2,2)],
mask_unit_size=(1, 8, 8),
patch_kernel=(3, 7, 7),
patch_stride=(2, 4, 4),
patch_padding=(1, 3, 3),
sep_pos_embed=True,
)
state_dict = torch.load(hiera_ckpt_path)['model_state']
state_dict.pop('pos_embed_temporal', None) # 如果不需要这个参数
model.load_state_dict(state_dict,strict=False)
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = model.state_dict()
self.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.requires_grad_(True)
self.model.train()
else:
self.model.requires_grad_(False)
self.model.train()
finally:
logging.disable(previous_level)
gc.collect()
torch.cuda.empty_cache()
def forward(self, x: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
import ipdb
ipdb.set_trace()
output, interm = model(x,return_intermediates=True)
video_features = interm[-1]
return [self.proj_out(video_features), torch.ones(video_features.shape[0], 1).to(device)]
class Video_Linear(Conditioner):
""" Transform the video feat encoder"""
def __init__(self, dim, output_dim):
super().__init__(dim, output_dim)
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
def forward(self, x, device: tp.Any = "cuda"):
# import ipdb
# ipdb.set_trace()
if not isinstance(x[0], torch.Tensor):
video_feats = []
for path in x:
if '.npy' in path:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
elif '.pth' in path:
video_feats.append(torch.load(path)['metaclip_features'].to(device))
else:
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
x = torch.stack(video_feats, dim=0).to(device)
else:
# Revise the shape here:
x = torch.stack(x, dim=0).to(device)
x = self.embedder(x) # B x 117 x C
return [x, torch.ones(x.shape[0], 1).to(device)]
class Video_Global(Conditioner):
""" Transform the video feat encoder"""
def __init__(self, dim, output_dim, global_dim=1536):
super().__init__(dim, output_dim)
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
self.global_proj = nn.Sequential(nn.Linear(output_dim, global_dim))
def forward(self, x, device: tp.Any = "cuda"):
# import ipdb
# ipdb.set_trace()
if not isinstance(x[0], torch.Tensor):
video_feats = []
for path in x:
if '.npy' in path:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
elif '.pth' in path:
data = torch.load(path)
video_feats.append(data['metaclip_features'].to(device))
else:
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
x = torch.stack(video_feats, dim=0).to(device)
else:
# Revise the shape here:
x = torch.stack(x, dim=0).to(device)
x = self.embedder(x) # B x 117 x C
global_x = self.global_proj(x.mean(dim=1))
return [x, torch.ones(x.shape[0], 1).to(device), global_x, torch.ones(global_x.shape[0], 1).to(device)]
class Video_Sync(Conditioner):
""" Transform the video feat encoder"""
def __init__(self, dim, output_dim):
super().__init__(dim, output_dim)
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
def forward(self, x, device: tp.Any = "cuda"):
# import ipdb
# ipdb.set_trace()
if not isinstance(x[0], torch.Tensor):
video_feats = []
for path in x:
if '.npy' in path:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
elif '.pth' in path:
video_feats.append(torch.load(path)['sync_features'].to(device))
else:
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
x = torch.stack(video_feats, dim=0).to(device)
else:
# Revise the shape here:
x = torch.stack(x, dim=0).to(device)
x = self.embedder(x) # B x 117 x C
return [x, torch.ones(x.shape[0], 1).to(device)]
class Text_Linear(Conditioner):
""" Transform the video feat encoder"""
def __init__(self, dim, output_dim):
super().__init__(dim, output_dim)
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
def forward(self, x, device: tp.Any = "cuda"):
# import ipdb
# ipdb.set_trace()
if not isinstance(x[0], torch.Tensor):
video_feats = []
for path in x:
if '.npy' in path:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
elif '.pth' in path:
video_feats.append(torch.load(path)['metaclip_text_features'].to(device))
else:
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
x = torch.stack(video_feats, dim=0).to(device)
else:
# Revise the shape here:
x = torch.stack(x, dim=0).to(device)
x = self.embedder(x) # B x 117 x C
return [x, torch.ones(x.shape[0], 1).to(device)]
class mm_unchang(Conditioner):
""" Transform the video feat encoder"""
def __init__(self, dim, output_dim):
super().__init__(dim, output_dim)
def forward(self, x, device: tp.Any = "cuda"):
# import ipdb
# ipdb.set_trace()
if not isinstance(x[0], torch.Tensor):
video_feats = []
for path in x:
if '.npy' in path:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
elif '.pth' in path:
video_feats.append(torch.load(path)['metaclip_features'].to(device))
else:
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
x = torch.stack(video_feats, dim=0).to(device)
else:
# Revise the shape here:
x = torch.stack(x, dim=0).to(device)
return [x]
class CLIPConditioner(Conditioner):
CLIP_MODELS = ["metaclip-base", "metaclip-b16", "metaclip-large", "metaclip-huge"]
CLIP_MODEL_DIMS = {
"metaclip-base": 512,
"metaclip-b16": 512,
"metaclip-large": 768,
"metaclip-huge": 1024,
}
def __init__(
self,
dim: int,
output_dim: int,
clip_model_name: str = "metaclip-huge",
enable_grad: bool = False,
project_out: bool = False
):
assert clip_model_name in self.CLIP_MODELS, f"Unknown CLIP model name: {clip_model_name}"
super().__init__(self.CLIP_MODEL_DIMS[clip_model_name], output_dim, project_out=project_out)
self.enable_grad = enable_grad
model = AutoModel.from_pretrained(f"useful_ckpts/{clip_model_name}").train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
if self.enable_grad:
self.model = model
else:
self.__dict__["model"] = model
def forward(self, images: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.model.to(device)
self.proj_out.to(device)
# import ipdb
# ipdb.set_trace()
self.model.eval()
if not isinstance(images[0], torch.Tensor):
video_feats = []
for path in images:
if '.npy' in path:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
else:
video_feats.append(torch.from_numpy(np.load(path)).to(device))
images = torch.stack(video_feats, dim=0).to(device)
else:
images = torch.stack(images, dim=0).to(device)
bsz, t, c, h, w = images.shape
# 使用 rearrange 进行维度合并
images = rearrange(images, 'b t c h w -> (b t) c h w')
with torch.set_grad_enabled(self.enable_grad):
image_features = self.model.get_image_features(images)
image_features = rearrange(image_features, '(b t) d -> b t d', b=bsz, t=t)
image_features = self.proj_out(image_features)
return [image_features, torch.ones(image_features.shape[0], 1).to(device)]
class IntConditioner(Conditioner):
def __init__(self,
output_dim: int,
min_val: int=0,
max_val: int=512
):
super().__init__(output_dim, output_dim)
self.min_val = min_val
self.max_val = max_val
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True)
def forward(self, ints: tp.List[int], device=None) -> tp.Any:
#self.int_embedder.to(device)
ints = torch.tensor(ints).to(device)
ints = ints.clamp(self.min_val, self.max_val)
int_embeds = self.int_embedder(ints).unsqueeze(1)
return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)]
class NumberConditioner(Conditioner):
'''
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
'''
def __init__(self,
output_dim: int,
min_val: float=0,
max_val: float=1
):
super().__init__(output_dim, output_dim)
self.min_val = min_val
self.max_val = max_val
self.embedder = NumberEmbedder(features=output_dim)
def forward(self, floats: tp.List[float], device=None) -> tp.Any:
# Cast the inputs to floats
floats = [float(x) for x in floats]
floats = torch.tensor(floats).to(device)
floats = floats.clamp(self.min_val, self.max_val)
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
# Cast floats to same type as embedder
embedder_dtype = next(self.embedder.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
class CLAPTextConditioner(Conditioner):
def __init__(self,
output_dim: int,
clap_ckpt_path,
use_text_features = False,
feature_layer_ix: int = -1,
audio_model_type="HTSAT-base",
enable_fusion=True,
project_out: bool = False,
finetune: bool = False):
super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out)
self.use_text_features = use_text_features
self.feature_layer_ix = feature_layer_ix
self.finetune = finetune
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = clap_load_state_dict(clap_ckpt_path)
self.model.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.model.text_branch.requires_grad_(True)
self.model.model.text_branch.train()
else:
self.model.model.text_branch.requires_grad_(False)
self.model.model.text_branch.eval()
finally:
logging.disable(previous_level)
del self.model.model.audio_branch
gc.collect()
torch.cuda.empty_cache()
def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"):
prompt_tokens = self.model.tokenizer(prompts)
attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True)
prompt_features = self.model.model.text_branch(
input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True),
attention_mask=attention_mask,
output_hidden_states=True
)["hidden_states"][layer_ix]
return prompt_features, attention_mask
def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
if self.use_text_features:
if len(texts) == 1:
text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device)
text_features = text_features[:1, ...]
text_attention_mask = text_attention_mask[:1, ...]
else:
text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device)
return [self.proj_out(text_features), text_attention_mask]
# Fix for CLAP bug when only one text is passed
if len(texts) == 1:
text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...]
else:
text_embedding = self.model.get_text_embedding(texts, use_tensor=True)
text_embedding = text_embedding.unsqueeze(1).to(device)
return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)]
class CLAPAudioConditioner(Conditioner):
def __init__(self,
output_dim: int,
clap_ckpt_path,
audio_model_type="HTSAT-base",
enable_fusion=True,
project_out: bool = False):
super().__init__(512, output_dim, project_out=project_out)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = clap_load_state_dict(clap_ckpt_path)
self.model.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.model.audio_branch.requires_grad_(True)
self.model.model.audio_branch.train()
else:
self.model.model.audio_branch.requires_grad_(False)
self.model.model.audio_branch.eval()
finally:
logging.disable(previous_level)
del self.model.model.text_branch
gc.collect()
torch.cuda.empty_cache()
def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
if isinstance(audios, list) or isinstance(audios, tuple):
audios = torch.cat(audios, dim=0)
# Convert to mono
mono_audios = audios.mean(dim=1)
with torch.cuda.amp.autocast(enabled=False):
audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True)
audio_embedding = audio_embedding.unsqueeze(1).to(device)
return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)]
class T5Conditioner(Conditioner):
T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
"google/flan-t5-xl", "google/flan-t5-xxl", "t5-v1_1-xl", "google/t5-v1_1-xxl"]
T5_MODEL_DIMS = {
"t5-small": 512,
"t5-base": 768,
"t5-large": 1024,
"t5-3b": 1024,
"t5-11b": 1024,
"t5-v1_1-xl": 2048,
"google/t5-v1_1-xxl": 4096,
"google/flan-t5-small": 512,
"google/flan-t5-base": 768,
"google/flan-t5-large": 1024,
"google/flan-t5-3b": 1024,
"google/flan-t5-11b": 1024,
"google/flan-t5-xl": 2048,
"google/flan-t5-xxl": 4096,
}
def __init__(
self,
output_dim: int,
t5_model_name: str = "t5-base",
max_length: str = 77,
enable_grad: bool = False,
project_out: bool = False
):
assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}"
super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out)
from transformers import T5EncoderModel, AutoTokenizer
self.max_length = max_length
self.enable_grad = enable_grad
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
# self.tokenizer = T5Tokenizer.from_pretrained(t5_model_name, model_max_length = max_length)
# model = T5EncoderModel.from_pretrained(t5_model_name, max_length=max_length).train(enable_grad).requires_grad_(enable_grad)
self.tokenizer = AutoTokenizer.from_pretrained(os.path.join('useful_ckpts', t5_model_name))
model = T5EncoderModel.from_pretrained(os.path.join('useful_ckpts', t5_model_name)).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
finally:
logging.disable(previous_level)
if self.enable_grad:
self.model = model
else:
self.__dict__["model"] = model
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.model.to(device)
self.proj_out.to(device)
encoded = self.tokenizer(
texts,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
self.model.eval()
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):
embeddings = self.model(
input_ids=input_ids, attention_mask=attention_mask
)["last_hidden_state"]
embeddings = self.proj_out(embeddings.float())
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, attention_mask
def patch_clip(clip_model):
# a hack to make it output last hidden states
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
def new_encode_text(self, text, normalize: bool = False):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = self.transformer(x, attn_mask=self.attn_mask)
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
return F.normalize(x, dim=-1) if normalize else x
clip_model.encode_text = new_encode_text.__get__(clip_model)
return clip_model
class CLIPTextConditioner(Conditioner):
def __init__(
self,
output_dim: int,
max_length: str = 77,
enable_grad: bool = False,
project_out: bool = False
):
super().__init__(1024, output_dim, project_out=project_out)
from transformers import T5EncoderModel, AutoTokenizer
import open_clip
from open_clip import create_model_from_pretrained
self.max_length = max_length
self.enable_grad = enable_grad
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384',cache_dir='useful_ckpts/DFN5B-CLIP-ViT-H-14-384',
return_transform=False).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
model = patch_clip(model)
self.tokenizer = open_clip.get_tokenizer('ViT-H-14-378-quickgelu') # same as 'ViT-H-14'
finally:
logging.disable(previous_level)
if self.enable_grad:
self.model = model
else:
self.__dict__["model"] = model
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.model.to(device)
self.proj_out.to(device)
encoded = self.tokenizer(
texts
).to(device)
# input_ids = encoded["input_ids"].to(device)
# attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
self.model.eval()
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):
embeddings = self.model.encode_text(
encoded
)
embeddings = self.proj_out(embeddings.float())
# embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, torch.ones(embeddings.shape[0], 1).to(device)
def patch_clip(clip_model):
# a hack to make it output last hidden states
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
def new_get_text_features(self, input_ids=None, attention_mask=None, position_ids=None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = text_outputs[0]
# pooled_output = text_outputs[1]
# text_features = self.text_projection(pooled_output)
return last_hidden_state
clip_model.get_text_features = new_get_text_features.__get__(clip_model)
return clip_model
class MetaCLIPTextConditioner(Conditioner):
def __init__(
self,
output_dim: int,
max_length: str = 77,
enable_grad: bool = False,
project_out: bool = False
):
super().__init__(1024, output_dim, project_out=project_out)
from transformers import AutoModel
from transformers import AutoProcessor
self.max_length = max_length
self.enable_grad = enable_grad
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.model = AutoModel.from_pretrained("useful_ckpts/metaclip-huge")
self.model = patch_clip(self.model)
self.clip_processor = AutoProcessor.from_pretrained("useful_ckpts/metaclip-huge")
finally:
logging.disable(previous_level)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.model.to(device)
self.proj_out.to(device)
encoded = self.clip_processor(text=texts, return_tensors="pt", padding=True).to(device)
# input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
self.model.eval()
with torch.set_grad_enabled(self.enable_grad):
embeddings = self.model.get_text_features(
**encoded
)
embeddings = self.proj_out(embeddings.float())
# embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, torch.ones(embeddings.shape[0],1).to(device)
class PhonemeConditioner(Conditioner):
"""
A conditioner that turns text into phonemes and embeds them using a lookup table
Only works for English text
Args:
output_dim: the dimension of the output embeddings
max_length: the maximum number of phonemes to embed
project_out: whether to add another linear projection to the output embeddings
"""
def __init__(
self,
output_dim: int,
max_length: int = 1024,
project_out: bool = False,
):
super().__init__(output_dim, output_dim, project_out=project_out)
from g2p_en import G2p
self.max_length = max_length
self.g2p = G2p()
# Reserving 0 for padding, 1 for ignored
self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.phoneme_embedder.to(device)
self.proj_out.to(device)
batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length]
phoneme_ignore = [" ", *string.punctuation]
# Remove ignored phonemes and cut to max length
batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes]
# Convert to ids
phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes]
#Pad to match longest and make a mask tensor for the padding
longest = max([len(ids) for ids in phoneme_ids])
phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids]
phoneme_ids = torch.tensor(phoneme_ids).to(device)
# Convert to embeddings
phoneme_embeds = self.phoneme_embedder(phoneme_ids)
phoneme_embeds = self.proj_out(phoneme_embeds)
return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device)
class TokenizerLUTConditioner(Conditioner):
"""
A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary
Args:
tokenizer_name: the name of the tokenizer from the Hugging Face transformers library
output_dim: the dimension of the output embeddings
max_length: the maximum length of the text to embed
project_out: whether to add another linear projection to the output embeddings
"""
def __init__(
self,
tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library
output_dim: int,
max_length: int = 1024,
project_out: bool = False,
):
super().__init__(output_dim, output_dim, project_out=project_out)
from transformers import AutoTokenizer
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
finally:
logging.disable(previous_level)
self.max_length = max_length
self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.proj_out.to(device)
encoded = self.tokenizer(
texts,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
embeddings = self.token_embedder(input_ids)
embeddings = self.proj_out(embeddings)
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, attention_mask
class PretransformConditioner(Conditioner):
"""
A conditioner that uses a pretransform's encoder for conditioning
Args:
pretransform: an instantiated pretransform to use for conditioning
output_dim: the dimension of the output embeddings
"""
def __init__(self, pretransform: Pretransform, output_dim: int):
super().__init__(pretransform.encoded_channels, output_dim)
self.pretransform = pretransform
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.pretransform.to(device)
self.proj_out.to(device)
if isinstance(audio, list) or isinstance(audio, tuple):
audio = torch.cat(audio, dim=0)
# Convert audio to pretransform input channels
audio = set_audio_channels(audio, self.pretransform.io_channels)
latents = self.pretransform.encode(audio)
latents = self.proj_out(latents)
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
class MultiConditioner(nn.Module):
"""
A module that applies multiple conditioners to an input dictionary based on the keys
Args:
conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt")
default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"})
"""
def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}):
super().__init__()
self.conditioners = nn.ModuleDict(conditioners)
self.default_keys = default_keys
def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]:
output = {}
for key, conditioner in self.conditioners.items():
condition_key = key
conditioner_inputs = []
for x in batch_metadata:
if condition_key not in x:
if condition_key in self.default_keys:
condition_key = self.default_keys[condition_key]
else:
raise ValueError(f"Conditioner key {condition_key} not found in batch metadata")
#Unwrap the condition info if it's a single-element list or tuple, this is to support collation functions that wrap everything in a list
if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1:
conditioner_input = x[condition_key][0]
else:
conditioner_input = x[condition_key]
conditioner_inputs.append(conditioner_input)
cond_output = conditioner(conditioner_inputs, device)
if len(cond_output) == 1:
output[key] = cond_output[0]
elif len(cond_output) == 2:
output[key] = cond_output
elif len(cond_output) == 4:
output[key] = cond_output[:2]
output[f'{key}_g'] = cond_output[2:]
return output
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner:
"""
Create a MultiConditioner from a conditioning config dictionary
Args:
config: the conditioning config dictionary
device: the device to put the conditioners on
"""
conditioners = {}
cond_dim = config["cond_dim"]
default_keys = config.get("default_keys", {})
for conditioner_info in config["configs"]:
id = conditioner_info["id"]
conditioner_type = conditioner_info["type"]
conditioner_config = {"output_dim": cond_dim}
conditioner_config.update(conditioner_info["config"])
if conditioner_type == "t5":
conditioners[id] = T5Conditioner(**conditioner_config)
elif conditioner_type == "clap_text":
conditioners[id] = CLAPTextConditioner(**conditioner_config)
elif conditioner_type == "clip_text":
conditioners[id] = CLIPTextConditioner(**conditioner_config)
elif conditioner_type == "metaclip_text":
conditioners[id] = MetaCLIPTextConditioner(**conditioner_config)
elif conditioner_type == "clap_audio":
conditioners[id] = CLAPAudioConditioner(**conditioner_config)
elif conditioner_type == "video_linear":
conditioners[id] = Video_Linear(**conditioner_config)
elif conditioner_type == "video_global":
conditioners[id] = Video_Global(**conditioner_config)
elif conditioner_type == "video_sync":
conditioners[id] = Video_Sync(**conditioner_config)
elif conditioner_type == "text_linear":
conditioners[id] = Text_Linear(**conditioner_config)
elif conditioner_type == "video_clip":
conditioners[id] = CLIPConditioner(**conditioner_config)
elif conditioner_type == "video_hiera":
conditioners[id] = VideoHieraConditioner(**conditioner_config)
elif conditioner_type == "int":
conditioners[id] = IntConditioner(**conditioner_config)
elif conditioner_type == "number":
conditioners[id] = NumberConditioner(**conditioner_config)
elif conditioner_type == "phoneme":
conditioners[id] = PhonemeConditioner(**conditioner_config)
elif conditioner_type == "lut":
conditioners[id] = TokenizerLUTConditioner(**conditioner_config)
elif conditioner_type == "pretransform":
sample_rate = conditioner_config.pop("sample_rate", None)
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
conditioners[id] = PretransformConditioner(pretransform, **conditioner_config)
elif conditioner_type == "mm_unchang":
conditioners[id] = mm_unchang(**conditioner_config)
else:
raise ValueError(f"Unknown conditioner type: {conditioner_type}")
return MultiConditioner(conditioners, default_keys=default_keys)