ThinkSound / think_sound /models /diffusion_prior.py
UncleWang233's picture
init
08f69f6
raw
history blame
2.7 kB
from enum import Enum
import typing as tp
from .diffusion import ConditionedDiffusionModelWrapper
from ..inference.generation import generate_diffusion_cond
from ..inference.utils import prepare_audio
import torch
from torch.nn import functional as F
from torchaudio import transforms as T
# Define prior types enum
class PriorType(Enum):
MonoToStereo = 1
class DiffusionPrior(ConditionedDiffusionModelWrapper):
def __init__(self, *args, prior_type: PriorType=None, **kwargs):
super().__init__(*args, **kwargs)
self.prior_type = prior_type
class MonoToStereoDiffusionPrior(DiffusionPrior):
def __init__(self, *args, **kwargs):
super().__init__(*args, prior_type=PriorType.MonoToStereo, **kwargs)
def stereoize(
self,
audio: torch.Tensor, # (batch, channels, time)
video: torch.Tensor,
in_sr: int,
steps: int,
sampler_kwargs: dict = {},
):
"""
Generate stereo audio from mono audio using a pre-trained diffusion prior
Args:
audio: The mono audio to convert to stereo
in_sr: The sample rate of the input audio
steps: The number of diffusion steps to run
sampler_kwargs: Keyword arguments to pass to the diffusion sampler
"""
device = audio.device
sample_rate = self.sample_rate
# Resample input audio if necessary
if in_sr != sample_rate:
resample_tf = T.Resample(in_sr, sample_rate).to(audio.device)
audio = resample_tf(audio)
audio_length = audio.shape[-1]
# # Pad input audio to be compatible with the model
# min_length = self.min_input_length
# padded_input_length = audio_length + (min_length - (audio_length % min_length)) % min_length
# # Pad input audio to be compatible with the model
# if padded_input_length > audio_length:
# audio = F.pad(audio, (0, padded_input_length - audio_length))
# Make audio mono, duplicate to stereo
dual_mono = audio.mean(1, keepdim=True).repeat(1, 2, 1)
if self.pretransform is not None:
dual_mono = self.pretransform.encode(dual_mono)
conditioning = self.conditioner([{'video':video}], device)
# Return fake stereo audio
conditioning["source"] = [dual_mono]
stereo_audio = generate_diffusion_cond(
self,
conditioning_tensors=conditioning,
steps=steps,
sample_size=audio_length,
sample_rate=sample_rate,
device=device,
cfg_scale=1,
**sampler_kwargs,
)
return stereo_audio