Spaces:
Running
on
Zero
Running
on
Zero
from prefigure.prefigure import get_all_args, push_wandb_config | |
import json | |
import os | |
import re | |
import torch | |
import torchaudio | |
# import pytorch_lightning as pl | |
import lightning as L | |
from lightning.pytorch.callbacks import Timer, ModelCheckpoint, BasePredictionWriter | |
from lightning.pytorch.callbacks import Callback | |
from lightning.pytorch.tuner import Tuner | |
from lightning.pytorch import seed_everything | |
import random | |
from datetime import datetime | |
from ThinkSound.data.datamodule import DataModule | |
from ThinkSound.models import create_model_from_config | |
from ThinkSound.models.utils import load_ckpt_state_dict, remove_weight_norm_from_model | |
from ThinkSound.training import create_training_wrapper_from_config, create_demo_callback_from_config | |
from ThinkSound.training.utils import copy_state_dict | |
from huggingface_hub import hf_hub_download | |
class ExceptionCallback(Callback): | |
def on_exception(self, trainer, module, err): | |
print(f'{type(err).__name__}: {err}') | |
class ModelConfigEmbedderCallback(Callback): | |
def __init__(self, model_config): | |
self.model_config = model_config | |
def on_save_checkpoint(self, trainer, pl_module, checkpoint): | |
checkpoint["model_config"] = self.model_config | |
class CustomWriter(BasePredictionWriter): | |
def __init__(self, output_dir, write_interval='batch', batch_size=32): | |
super().__init__(write_interval) | |
self.output_dir = output_dir | |
self.batch_size = batch_size | |
def write_on_batch_end(self, trainer, pl_module, predictions, batch_indices, batch, batch_idx, dataloader_idx): | |
audios = predictions | |
ids = [item['id'] for item in batch[1]] | |
current_date = datetime.now() | |
formatted_date = current_date.strftime('%m%d') | |
os.makedirs(os.path.join(self.output_dir, f'{formatted_date}_batch_size{self.batch_size}'),exist_ok=True) | |
for audio, id in zip(audios, ids): | |
save_path = os.path.join(self.output_dir, f'{formatted_date}_batch_size{self.batch_size}', f'{id}.wav') | |
torchaudio.save(save_path, audio, 44100) | |
def main(): | |
args = get_all_args() | |
# args.pretransform_ckpt_path = hf_hub_download( | |
# repo_id="liuhuadai/ThinkSound", | |
# filename="vae.ckpt" | |
# ) | |
args.pretransform_ckpt_path = "./ckpts/vae.ckpt" | |
seed = 10086 | |
# Set a different seed for each process if using SLURM | |
if os.environ.get("SLURM_PROCID") is not None: | |
seed += int(os.environ.get("SLURM_PROCID")) | |
# random.seed(seed) | |
# torch.manual_seed(seed) | |
seed_everything(seed, workers=True) | |
#Get JSON config from args.model_config | |
with open(args.model_config) as f: | |
model_config = json.load(f) | |
with open(args.dataset_config) as f: | |
dataset_config = json.load(f) | |
for td in dataset_config["test_datasets"]: | |
td["path"] = args.results_dir | |
# train_dl = create_dataloader_from_config( | |
# dataset_config, | |
# batch_size=args.batch_size, | |
# num_workers=args.num_workers, | |
# sample_rate=model_config["sample_rate"], | |
# sample_size=model_config["sample_size"], | |
# audio_channels=model_config.get("audio_channels", 2), | |
# ) | |
duration=(float)(args.duration_sec) | |
dm = DataModule( | |
dataset_config, | |
batch_size=args.batch_size, | |
test_batch_size=args.test_batch_size, | |
num_workers=args.num_workers, | |
sample_rate=model_config["sample_rate"], | |
sample_size=(float)(args.duration_sec) * model_config["sample_rate"], | |
audio_channels=model_config.get("audio_channels", 2), | |
latent_length=round(44100/64/32*duration), | |
) | |
model_config["sample_size"] = duration * model_config["sample_rate"] | |
model_config["model"]["diffusion"]["config"]["sync_seq_len"] = 24*int(duration) | |
model_config["model"]["diffusion"]["config"]["clip_seq_len"] = 8*int(duration) | |
model_config["model"]["diffusion"]["config"]["latent_seq_len"] = round(44100/64/32*duration) | |
model = create_model_from_config(model_config) | |
## speed by torch.compile | |
if args.compile: | |
model = torch.compile(model) | |
if args.pretrained_ckpt_path: | |
copy_state_dict(model, load_ckpt_state_dict(args.pretrained_ckpt_path,prefix='diffusion.')) # autoencoder. diffusion. | |
if args.remove_pretransform_weight_norm == "pre_load": | |
remove_weight_norm_from_model(model.pretransform) | |
# import ipdb | |
# ipdb.set_trace() | |
if args.pretransform_ckpt_path: | |
load_vae_state = load_ckpt_state_dict(args.pretransform_ckpt_path, prefix='autoencoder.') | |
# new_state_dict = {k.replace("autoencoder.", ""): v for k, v in load_vae_state.items() if k.startswith("autoencoder.")} | |
model.pretransform.load_state_dict(load_vae_state) | |
# Remove weight_norm from the pretransform if specified | |
if args.remove_pretransform_weight_norm == "post_load": | |
remove_weight_norm_from_model(model.pretransform) | |
training_wrapper = create_training_wrapper_from_config(model_config, model) | |
# wandb_logger = L.pytorch.loggers.WandbLogger(project=args.name) | |
# wandb_logger.watch(training_wrapper) | |
exc_callback = ExceptionCallback() | |
# if args.save_dir and isinstance(wandb_logger.experiment.id, str): | |
# checkpoint_dir = os.path.join(args.save_dir, wandb_logger.experiment.project, wandb_logger.experiment.id, "checkpoints") | |
# else: | |
# checkpoint_dir = None | |
# ckpt_callback = ModelCheckpoint(every_n_train_steps=args.checkpoint_every, dirpath=checkpoint_dir, monitor='val_loss', mode='min', save_top_k=10) | |
save_model_config_callback = ModelConfigEmbedderCallback(model_config) | |
audio_dir = args.results_dir | |
pred_writer = CustomWriter(output_dir=audio_dir, write_interval="batch", batch_size=args.test_batch_size) | |
timer = Timer(duration="00:15:00:00") | |
demo_callback = create_demo_callback_from_config(model_config, demo_dl=dm) | |
#Combine args and config dicts | |
args_dict = vars(args) | |
args_dict.update({"model_config": model_config}) | |
args_dict.update({"dataset_config": dataset_config}) | |
# push_wandb_config(wandb_logger, args_dict) | |
#Set multi-GPU strategy if specified | |
if args.strategy: | |
if args.strategy == "deepspeed": | |
from pytorch_lightning.strategies import DeepSpeedStrategy | |
strategy = DeepSpeedStrategy(stage=2, | |
contiguous_gradients=True, | |
overlap_comm=True, | |
reduce_scatter=True, | |
reduce_bucket_size=5e8, | |
allgather_bucket_size=5e8, | |
load_full_weights=True | |
) | |
else: | |
strategy = args.strategy | |
else: | |
strategy = 'ddp_find_unused_parameters_true' if args.num_gpus > 1 else "auto" | |
trainer = L.Trainer( | |
devices=args.num_gpus, | |
accelerator="gpu", | |
num_nodes = args.num_nodes, | |
strategy=strategy, | |
precision=args.precision, | |
accumulate_grad_batches=args.accum_batches, | |
callbacks=[demo_callback, exc_callback, save_model_config_callback, timer, pred_writer], | |
log_every_n_steps=1, | |
max_epochs=1000, | |
default_root_dir=args.save_dir, | |
gradient_clip_val=args.gradient_clip_val, | |
reload_dataloaders_every_n_epochs = 0, | |
check_val_every_n_epoch=2, | |
) | |
# ckpt_path = hf_hub_download( | |
# repo_id="liuhuadai/ThinkSound", | |
# filename="thinksound.ckpt" | |
# ) | |
ckpt_path = 'ckpts/thinksound.ckpt' | |
current_date = datetime.now() | |
formatted_date = current_date.strftime('%m%d') | |
audio_dir = f'{formatted_date}_step68k_batch_size'+str(args.test_batch_size) | |
metrics_path = os.path.join(args.ckpt_dir, 'audios',audio_dir,'cache',"output_metrics.json") | |
# if os.path.exists(metrics_path): continue | |
trainer.predict(training_wrapper, dm, return_predictions=False,ckpt_path=ckpt_path) | |
if __name__ == '__main__': | |
main() |