import logging from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import sys from .mmmodules.ext.rotary_embeddings import compute_rope_rotations from .mmmodules.model.embeddings import TimestepEmbedder from .mmmodules.model.low_level import MLP, ChannelLastConv1d, ConvMLP from .mmmodules.model.transformer_layers import (FinalBlock, JointBlock, MMDitSingleBlock) from .utils import resample log = logging.getLogger() @dataclass class PreprocessedConditions: clip_f: torch.Tensor sync_f: torch.Tensor text_f: torch.Tensor clip_f_c: torch.Tensor text_f_c: torch.Tensor # Partially from https://github.com/facebookresearch/DiT class MMAudio(nn.Module): def __init__(self, *, latent_dim: int, clip_dim: int, sync_dim: int, text_dim: int, hidden_dim: int, depth: int, fused_depth: int, num_heads: int, mlp_ratio: float = 4.0, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int, text_seq_len: int = 77, latent_mean: Optional[torch.Tensor] = None, latent_std: Optional[torch.Tensor] = None, empty_string_feat: Optional[torch.Tensor] = None, v2: bool = False, kernel_size: int = 7, sync_kernel: int = 7, use_inpaint: bool = False, use_mlp: bool = False, cross_attend: bool = False, add_video: bool = False, triple_fusion: bool = False, gated_video: bool = False) -> None: super().__init__() self.v2 = v2 self.latent_dim = latent_dim self._latent_seq_len = latent_seq_len self._clip_seq_len = clip_seq_len self._sync_seq_len = sync_seq_len self._text_seq_len = text_seq_len self.hidden_dim = hidden_dim self.num_heads = num_heads self.cross_attend = cross_attend self.add_video = add_video self.gated_video = gated_video self.triple_fusion = triple_fusion self.use_inpaint = use_inpaint if self.gated_video: self.gated_mlp = nn.Sequential( nn.LayerNorm(hidden_dim * 2), nn.Linear(hidden_dim*2, hidden_dim * 4, bias=False), nn.SiLU(), nn.Linear(hidden_dim * 4, hidden_dim, bias=False), nn.Sigmoid() ) # 初始化最后一层权重为零,促进初始均匀融合 nn.init.zeros_(self.gated_mlp[3].weight) if self.triple_fusion: self.gated_mlp_v = nn.Sequential( nn.LayerNorm(hidden_dim * 3), nn.Linear(hidden_dim*3, hidden_dim * 4, bias=False), nn.SiLU(), nn.Linear(hidden_dim * 4, hidden_dim, bias=False), nn.Sigmoid() ) self.gated_mlp_t = nn.Sequential( nn.LayerNorm(hidden_dim * 3), nn.Linear(hidden_dim*3, hidden_dim * 4, bias=False), nn.SiLU(), nn.Linear(hidden_dim * 4, hidden_dim, bias=False), nn.Sigmoid() ) # 初始化最后一层权重为零,促进初始均匀融合 nn.init.zeros_(self.gated_mlp_v[3].weight) nn.init.zeros_(self.gated_mlp_t[3].weight) if v2: padding_size = (kernel_size - 1) // 2 if use_inpaint: self.audio_input_proj = nn.Sequential( ChannelLastConv1d(latent_dim*2, hidden_dim, kernel_size=kernel_size, padding=padding_size), nn.SiLU(), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=kernel_size, padding=padding_size), ) else: self.audio_input_proj = nn.Sequential( ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=kernel_size, padding=padding_size), nn.SiLU(), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=kernel_size, padding=padding_size), ) self.clip_input_proj = nn.Sequential( nn.Linear(clip_dim, hidden_dim), nn.SiLU(), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), ) sync_pad = (sync_kernel - 1) // 2 self.sync_input_proj = nn.Sequential( ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=sync_kernel, padding=sync_pad), nn.SiLU(), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), ) self.text_input_proj = nn.Sequential( nn.Linear(text_dim, hidden_dim), nn.SiLU(), MLP(hidden_dim, hidden_dim * 4), ) else: self.audio_input_proj = nn.Sequential( ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3), nn.SELU(), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3), ) self.clip_input_proj = nn.Sequential( nn.Linear(clip_dim, hidden_dim), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), ) self.sync_input_proj = nn.Sequential( ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3), nn.SELU(), ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), ) self.text_input_proj = nn.Sequential( nn.Linear(text_dim, hidden_dim), MLP(hidden_dim, hidden_dim * 4), ) self.clip_cond_proj = nn.Linear(hidden_dim, hidden_dim) if use_mlp: self.text_cond_proj = nn.Sequential( nn.Linear(1024, hidden_dim), MLP(hidden_dim, hidden_dim * 4), ) else: self.text_cond_proj = nn.Linear(1024, hidden_dim) self.global_cond_mlp = MLP(hidden_dim, hidden_dim * 4) # each synchformer output segment has 8 feature frames self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, sync_dim))) self.final_layer = FinalBlock(hidden_dim, latent_dim) if v2: self.t_embed = TimestepEmbedder(hidden_dim, frequency_embedding_size=hidden_dim, max_period=1) else: self.t_embed = TimestepEmbedder(hidden_dim, frequency_embedding_size=256, max_period=10000) self.joint_blocks = nn.ModuleList([ JointBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, pre_only=(i == depth - fused_depth - 1)) for i in range(depth - fused_depth) ]) self.fused_blocks = nn.ModuleList([ MMDitSingleBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, kernel_size=kernel_size, padding=padding_size, cross_attend=cross_attend) for i in range(fused_depth) ]) if empty_string_feat is None: empty_string_feat = torch.zeros((77, 1024)) empty_t5_feat = torch.zeros((77, 2048)) self.empty_string_feat = nn.Parameter(empty_string_feat, requires_grad=False) self.empty_t5_feat = nn.Parameter(empty_t5_feat, requires_grad=False) self.empty_clip_feat = nn.Parameter(torch.zeros(1, clip_dim), requires_grad=True) self.empty_sync_feat = nn.Parameter(torch.zeros(1, sync_dim), requires_grad=True) self.initialize_weights() self.initialize_rotations() def initialize_rotations(self): base_freq = 1.0 latent_rot = compute_rope_rotations(self._latent_seq_len, self.hidden_dim // self.num_heads, 10000, freq_scaling=base_freq, device=self.device) clip_rot = compute_rope_rotations(self._clip_seq_len, self.hidden_dim // self.num_heads, 10000, freq_scaling=base_freq * self._latent_seq_len / self._clip_seq_len, device=self.device) self.latent_rot = nn.Buffer(latent_rot, persistent=False) self.clip_rot = nn.Buffer(clip_rot, persistent=False) def update_seq_lengths(self, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int) -> None: self._latent_seq_len = latent_seq_len self._clip_seq_len = clip_seq_len self._sync_seq_len = sync_seq_len self.initialize_rotations() def initialize_weights(self): def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embed.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embed.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.joint_blocks: nn.init.constant_(block.latent_block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.latent_block.adaLN_modulation[-1].bias, 0) nn.init.constant_(block.clip_block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.clip_block.adaLN_modulation[-1].bias, 0) nn.init.constant_(block.text_block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.text_block.adaLN_modulation[-1].bias, 0) for block in self.fused_blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.conv.weight, 0) nn.init.constant_(self.final_layer.conv.bias, 0) # empty string feat shall be initialized by a CLIP encoder nn.init.constant_(self.sync_pos_emb, 0) nn.init.constant_(self.empty_clip_feat, 0) nn.init.constant_(self.empty_sync_feat, 0) def preprocess_conditions(self, clip_f: torch.Tensor, sync_f: torch.Tensor, text_f: torch.Tensor, t5_features: torch.Tensor, metaclip_global_text_features: torch.Tensor) -> PreprocessedConditions: """ cache computations that do not depend on the latent/time step i.e., the features are reused over steps during inference """ # breakpoint() assert clip_f.shape[1] == self._clip_seq_len, f'{clip_f.shape=} {self._clip_seq_len=}' assert sync_f.shape[1] == self._sync_seq_len, f'{sync_f.shape=} {self._sync_seq_len=}' assert text_f.shape[1] == self._text_seq_len, f'{text_f.shape=} {self._text_seq_len=}' bs = clip_f.shape[0] # B * num_segments (24) * 8 * 768 num_sync_segments = self._sync_seq_len // 8 sync_f = sync_f.view(bs, num_sync_segments, 8, -1) + self.sync_pos_emb sync_f = sync_f.flatten(1, 2) # (B, VN, D) # extend vf to match x clip_f = self.clip_input_proj(clip_f) # (B, VN, D) sync_f = self.sync_input_proj(sync_f) # (B, VN, D) if t5_features is not None: if metaclip_global_text_features is not None: text_f_c = self.text_cond_proj(metaclip_global_text_features) # (B, D) else: text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D) # 计算填充长度 padding_size = t5_features.size(2) - text_f.size(2) # 渴望填充的数量 # 当确实需要填充的时候,确保填充是正数 if padding_size > 0: # 填充 text_f 的特征维度两侧 text_f = F.pad(text_f, pad=(0, padding_size), mode='constant', value=0) # 在最后一个维度上进行填充 else: text_f = text_f # 如果填充长度不是正数,则不需要填充 text_concat = torch.cat((text_f, t5_features), dim=1) text_f = self.text_input_proj(text_concat) # (B, VN, D) else: text_f = self.text_input_proj(text_f) # (B, VN, D) if metaclip_global_text_features is not None: text_f_c = self.text_cond_proj(metaclip_global_text_features) # (B, D) else: text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D) # upsample the sync features to match the audio sync_f = sync_f.transpose(1, 2) # (B, D, VN) # sync_f = resample(sync_f, self._latent_seq_len) sync_f = F.interpolate(sync_f, size=self._latent_seq_len, mode='nearest-exact') sync_f = sync_f.transpose(1, 2) # (B, N, D) # get conditional features from the clip side clip_f_c = self.clip_cond_proj(clip_f.mean(dim=1)) # (B, D) return PreprocessedConditions(clip_f=clip_f, sync_f=sync_f, text_f=text_f, clip_f_c=clip_f_c, text_f_c=text_f_c) def predict_flow(self, latent: torch.Tensor, t: torch.Tensor, conditions: PreprocessedConditions, inpaint_masked_input=None, cfg_scale:float=1.0,cfg_dropout_prob:float=0.0,scale_phi:float=0.0 ) -> torch.Tensor: """ for non-cacheable computations """ # print(f'cfg_scale: {cfg_scale}, cfg_dropout_prob: {cfg_dropout_prob}, scale_phi: {scale_phi}') assert latent.shape[1] == self._latent_seq_len, f'{latent.shape=} {self._latent_seq_len=}' empty_conditions = None if inpaint_masked_input is not None: inpaint_masked_input = inpaint_masked_input.transpose(1,2) clip_f = conditions.clip_f sync_f = conditions.sync_f text_f = conditions.text_f clip_f_c = conditions.clip_f_c text_f_c = conditions.text_f_c # breakpoint() if inpaint_masked_input is not None: latent = torch.cat([latent,inpaint_masked_input],dim=2) latent = self.audio_input_proj(latent) # (B, N, D) global_c = self.global_cond_mlp(clip_f_c + text_f_c) # (B, D) # global_c = text_f_c global_c = self.t_embed(t).unsqueeze(1) + global_c.unsqueeze(1) # (B, D) extended_c = global_c + sync_f for block in self.joint_blocks: latent, clip_f, text_f = block(latent, clip_f, text_f, global_c, extended_c, self.latent_rot, self.clip_rot) # (B, N, D) if self.add_video: if clip_f.shape[1] != latent.shape[1]: clip_f = resample(clip_f, latent) if self.triple_fusion: text_f = torch.mean(text_f, dim=1, keepdim=True) # (bsz, 1, D) text_f = text_f.expand(-1,latent.shape[1], -1) # (T_audio, D) fusion = torch.concat((latent, clip_f, text_f),dim=-1) gate_v = self.gated_mlp_v(fusion) gate_t = self.gated_mlp_t(fusion) # modulated_latent = gate * latent # 非对称设计 latent = latent + gate_v * clip_f + gate_t * text_f elif self.gated_video: fusion = torch.concat((latent, clip_f),dim=-1) gate = self.gated_mlp(fusion) modulated_latent = gate * latent # 非对称设计 latent = latent + modulated_latent else: latent = latent + clip_f for block in self.fused_blocks: if self.cross_attend: latent = block(latent, extended_c, self.latent_rot, context=text_f) else: latent = block(latent, extended_c, self.latent_rot) # should be extended_c; this is a minor implementation error #55 flow = self.final_layer(latent, extended_c) # (B, N, out_dim), remove t return flow def forward(self, latent: torch.Tensor, t: torch.Tensor, clip_f: torch.Tensor, sync_f: torch.Tensor, text_f: torch.Tensor, inpaint_masked_input, t5_features, metaclip_global_text_features, cfg_scale:float,cfg_dropout_prob:float,scale_phi:float) -> torch.Tensor: """ latent: (B, N, C) vf: (B, T, C_V) t: (B,) """ # breakpoint() # print(f'cfg_scale: {cfg_scale}, cfg_dropout_prob: {cfg_dropout_prob}, scale_phi: {scale_phi}') if self.use_inpaint and inpaint_masked_input is None: inpaint_masked_input = torch.zeros_like(latent, device=latent.device) latent = latent.permute(0, 2, 1) if cfg_dropout_prob > 0.0: if inpaint_masked_input is not None: null_embed = torch.zeros_like(inpaint_masked_input,device=latent.device) dropout_mask = torch.bernoulli(torch.full((inpaint_masked_input.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) inpaint_masked_input = torch.where(dropout_mask, null_embed, inpaint_masked_input) null_embed = torch.zeros_like(clip_f,device=latent.device) dropout_mask = torch.bernoulli(torch.full((clip_f.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) # clip_f = torch.where(dropout_mask, null_embed, clip_f) clip_f = torch.where(dropout_mask, self.empty_clip_feat, clip_f) null_embed = torch.zeros_like(sync_f,device=latent.device) dropout_mask = torch.bernoulli(torch.full((sync_f.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) # sync_f = torch.where(dropout_mask, null_embed, sync_f) sync_f = torch.where(dropout_mask, self.empty_sync_feat, sync_f) null_embed = torch.zeros_like(text_f,device=latent.device) dropout_mask = torch.bernoulli(torch.full((text_f.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) # text_f = torch.where(dropout_mask, null_embed, text_f) text_f = torch.where(dropout_mask, self.empty_string_feat, text_f) if t5_features is not None: null_embed = torch.zeros_like(t5_features,device=latent.device) dropout_mask = torch.bernoulli(torch.full((t5_features.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) # t5_features = torch.where(dropout_mask, null_embed, t5_features) t5_features = torch.where(dropout_mask, self.empty_t5_feat, t5_features) if metaclip_global_text_features is not None: null_embed = torch.zeros_like(metaclip_global_text_features,device=latent.device) dropout_mask = torch.bernoulli(torch.full((metaclip_global_text_features.shape[0], 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) metaclip_global_text_features = torch.where(dropout_mask, null_embed, metaclip_global_text_features) # null_embed = torch.zeros_like(clip_f_c,device=latent.device) # dropout_mask = torch.bernoulli(torch.full((clip_f_c.shape[0], 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) # clip_f_c = torch.where(dropout_mask, null_embed, clip_f_c) # null_embed = torch.zeros_like(text_f_c,device=latent.device) # dropout_mask = torch.bernoulli(torch.full((text_f_c.shape[0], 1), cfg_dropout_prob, device=latent.device)).to(torch.bool) # text_f_c = torch.where(dropout_mask, null_embed, text_f_c) if cfg_scale != 1.0: # empty_conditions = self.get_empty_conditions(latent.shape[0]) # breakpoint() bsz = latent.shape[0] latent = torch.cat([latent,latent], dim=0) if inpaint_masked_input is not None: empty_inpaint_masked_input = torch.zeros_like(inpaint_masked_input, device=latent.device) inpaint_masked_input = torch.cat([inpaint_masked_input,empty_inpaint_masked_input], dim=0) t = torch.cat([t, t], dim=0) empty_clip_f = torch.zeros_like(clip_f, device=latent.device) empty_sync_f = torch.zeros_like(sync_f, device=latent.device) empty_text_f = torch.zeros_like(text_f, device=latent.device) # clip_f = torch.cat([clip_f,empty_clip_f], dim=0) # sync_f = torch.cat([sync_f,empty_sync_f], dim=0) # text_f = torch.cat([text_f,empty_text_f], dim=0) clip_f = torch.cat([clip_f,self.get_empty_clip_sequence(bsz)], dim=0) sync_f = torch.cat([sync_f,self.get_empty_sync_sequence(bsz)], dim=0) text_f = torch.cat([text_f,self.get_empty_string_sequence(bsz)], dim=0) if t5_features is not None: empty_t5_features = torch.zeros_like(t5_features, device=latent.device) # t5_features = torch.cat([t5_features,empty_t5_features], dim=0) t5_features = torch.cat([t5_features,self.get_empty_t5_sequence(bsz)], dim=0) if metaclip_global_text_features is not None: empty_metaclip_global_text_features = torch.zeros_like(metaclip_global_text_features, device=latent.device) metaclip_global_text_features = torch.cat([metaclip_global_text_features,empty_metaclip_global_text_features], dim=0) # metaclip_global_text_features = torch.cat([metaclip_global_text_features,metaclip_global_text_features], dim=0) # clip_f_c = torch.cat([clip_f_c,empty_clip_f_c], dim=0) # text_f_c = torch.cat([text_f_c,empty_text_f_c], dim=0) conditions = self.preprocess_conditions(clip_f, sync_f, text_f, t5_features, metaclip_global_text_features) flow = self.predict_flow(latent, t, conditions, inpaint_masked_input, cfg_scale,cfg_dropout_prob,scale_phi) if cfg_scale != 1.0: cond_output, uncond_output = torch.chunk(flow, 2, dim=0) cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale if scale_phi != 0.0: cond_out_std = cond_output.std(dim=1, keepdim=True) out_cfg_std = cfg_output.std(dim=1, keepdim=True) flow = scale_phi * (cfg_output * (cond_out_std/out_cfg_std)) + (1-scale_phi) * cfg_output else: flow = cfg_output flow = flow.permute(0, 2, 1) return flow def get_empty_string_sequence(self, bs: int) -> torch.Tensor: return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1) def get_empty_t5_sequence(self, bs: int) -> torch.Tensor: return self.empty_t5_feat.unsqueeze(0).expand(bs, -1, -1) def get_empty_clip_sequence(self, bs: int) -> torch.Tensor: return self.empty_clip_feat.unsqueeze(0).expand(bs, self._clip_seq_len, -1) def get_empty_sync_sequence(self, bs: int) -> torch.Tensor: return self.empty_sync_feat.unsqueeze(0).expand(bs, self._sync_seq_len, -1) def get_empty_conditions( self, bs: int, *, negative_text_features: Optional[torch.Tensor] = None) -> PreprocessedConditions: if negative_text_features is not None: empty_text = negative_text_features else: empty_text = self.get_empty_string_sequence(1) empty_clip = self.get_empty_clip_sequence(1) empty_sync = self.get_empty_sync_sequence(1) conditions = self.preprocess_conditions(empty_clip, empty_sync, empty_text) conditions.clip_f = conditions.clip_f.expand(bs, -1, -1) conditions.sync_f = conditions.sync_f.expand(bs, -1, -1) conditions.clip_f_c = conditions.clip_f_c.expand(bs, -1) if negative_text_features is None: conditions.text_f = conditions.text_f.expand(bs, -1, -1) conditions.text_f_c = conditions.text_f_c.expand(bs, -1) return conditions def load_weights(self, src_dict) -> None: if 't_embed.freqs' in src_dict: del src_dict['t_embed.freqs'] if 'latent_rot' in src_dict: del src_dict['latent_rot'] if 'clip_rot' in src_dict: del src_dict['clip_rot'] self.load_state_dict(src_dict, strict=True) @property def device(self) -> torch.device: return self.empty_clip_feat.device @property def latent_seq_len(self) -> int: return self._latent_seq_len @property def clip_seq_len(self) -> int: return self._clip_seq_len @property def sync_seq_len(self) -> int: return self._sync_seq_len