import os from pathlib import Path from typing import Optional, Union from PIL import Image import pandas as pd import torch import torchaudio from torch.utils.data.dataset import Dataset from torchvision.transforms import v2 from torio.io import StreamingMediaDecoder from torchvision.utils import save_image from transformers import AutoProcessor import torch.nn.functional as F import numpy as np import logging log = logging.getLogger() _CLIP_SIZE = 224 _CLIP_FPS = 8.0 _SYNC_SIZE = 224 _SYNC_FPS = 25.0 class Audio_Text(Dataset): def __init__( self, root: Union[str, Path], *, tsv_path: Union[str, Path] = 'dataset/vggsound/split_txt/train_caption.csv', sample_rate: int = 44_100, duration_sec: float = 9.0, audio_samples: Optional[int] = 397312, normalize_audio: bool = False, start_row: Optional[int] = None, end_row: Optional[int] = None, save_dir: str = 'data/vggsound/video_latents_text/train' ): self.root = Path(root) self.normalize_audio = normalize_audio if audio_samples is None: self.audio_samples = int(sample_rate * duration_sec) else: self.audio_samples = audio_samples effective_duration = audio_samples / sample_rate # make sure the duration is close enough, within 15ms assert abs(effective_duration - duration_sec) < 0.015, \ f'audio_samples {audio_samples} does not match duration_sec {duration_sec}' # videos = sorted(os.listdir(self.root)) # videos = set([Path(v).stem for v in videos]) # remove extensions videos = [] self.labels = [] self.videos = [] self.cots = [] missing_videos = [] # read the tsv for subset information df_list = pd.read_csv(tsv_path, sep=',', dtype={'id': str}).to_dict('records') # 控制处理的行范围 if start_row is not None and end_row is not None: df_list = df_list[start_row:end_row] for record in df_list: id = record['id'] if os.path.exists(f'{save_dir}/{id}.pth'): continue label = record['caption'] # if id in videos: self.labels.append(label) # print(label,'debug1!!!!!!!!!') self.cots.append(record['caption_cot']) # self.labels[id] = label self.videos.append(id) # else: # missing_videos.append(id) log.info(f'{len(videos)} videos found in {root}') log.info(f'{len(self.videos)} videos found in {tsv_path}') log.info(f'{len(missing_videos)} videos missing in {root}') self.sample_rate = sample_rate self.duration_sec = duration_sec self.expected_audio_length = self.audio_samples self.resampler = {} def sample(self, idx: int): video_id = self.videos[idx] label = self.labels[idx] cot = self.cots[idx] audio_path = os.path.join(self.root, f'{video_id}.wav') if not os.path.exists(audio_path): audio_path = os.path.join(self.root, f'{video_id}.flac') if not os.path.exists(audio_path): raise RuntimeError(f'Audio is not exist {audio_path}') audio_chunk, sample_rate = torchaudio.load(audio_path) if len(audio_chunk.shape) != 2: raise RuntimeError(f'error audio shape {video_id}') abs_max = audio_chunk[0].abs().max() if abs_max <= 1e-6: if audio_chunk.shape[0] > 1 and audio_chunk[1].abs().max() > 1e-6: audio_chunk = audio_chunk[1:2] else: raise RuntimeError(f'Audio is silent {video_id}') # ensure the stereo audio if audio_chunk.shape[0] < 2: audio_chunk = audio_chunk.repeat(2, 1) elif audio_chunk.shape[0] > 2: audio_chunk = audio_chunk[:2] # resample if sample_rate == self.sample_rate: audio_chunk = audio_chunk else: if sample_rate not in self.resampler: # https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best self.resampler[sample_rate] = torchaudio.transforms.Resample( sample_rate, self.sample_rate, lowpass_filter_width=64, rolloff=0.9475937167399596, resampling_method='sinc_interp_kaiser', beta=14.769656459379492, ) audio_chunk = self.resampler[sample_rate](audio_chunk) if audio_chunk.shape[1] < self.expected_audio_length: # zero-padding audio padding_length = self.expected_audio_length - audio_chunk.shape[1] # 创建 padding 张量,大小为 [batch_size, padding_length],值为0 padding = torch.zeros(audio_chunk.shape[0], padding_length) # 将原始音频和 padding 沿第 1 维度拼接在一起 audio_chunk = torch.cat((audio_chunk, padding), dim=1) # raise RuntimeError(f'Audio too short {video_id}') audio_chunk = audio_chunk[:,:self.expected_audio_length] assert audio_chunk.shape == (2, 397312), f'error shape:{video_id},{audio_chunk.shape}' # print(label,'debug2!!!!!!!!!') data = { 'id': video_id, 'caption': label, 'caption_cot': cot, 'audio': audio_chunk, } return data def __getitem__(self, idx: int): try: return self.sample(idx) except Exception as e: log.error(f'Error loading video {self.videos[idx]}: {e}') return None def __len__(self): return len(self.labels) # dataset = VGGSound( # root="data/vggsound/video/train", # tsv_path="data/vggsound/split_txt/temp.csv", # sample_rate=44100, # duration_sec=9.0, # audio_samples=397312, # start_row=0, # end_row=None, # save_dir="data/vggsound/video_224_latents_text/train" # ) # dataset[0]