File size: 7,547 Bytes
758f7bd
 
 
 
 
 
 
 
 
3de0c5f
 
 
 
 
b99a0ed
3de0c5f
 
 
9e6d70c
92aa5f2
 
5fcc198
 
d6bbbdc
3de0c5f
 
 
8d20685
3de0c5f
 
 
 
8143d70
 
 
 
e3a4463
8143d70
 
3de0c5f
 
 
92aa5f2
9cbf6e6
92aa5f2
9cbf6e6
 
 
 
 
d0f751c
3de0c5f
9cbf6e6
9e6d70c
 
2a6496c
 
3de0c5f
 
d6bbbdc
 
3de0c5f
9e6d70c
 
 
 
 
3de0c5f
 
d0f751c
9911ac3
3de0c5f
 
 
9e6d70c
 
 
3de0c5f
9e6d70c
 
 
3de0c5f
 
 
 
38256b4
3de0c5f
 
 
 
 
 
 
 
 
d0f751c
fdb20dd
3de0c5f
 
 
9e6d70c
 
3de0c5f
 
d0f751c
9cbf6e6
38256b4
9cbf6e6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
title: README
emoji: πŸƒ
colorFrom: pink
colorTo: red
sdk: static
pinned: false
---

<p align="center" width="100%">
</p>

<div id="top" align="center">

<p style="font-size: 40px; font-weight: bold;">Knowledge Fusion of Large Language Models</p>


<h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ FuseLLM Paper @ICLR2024 </a> |
<a href="https://arxiv.org/abs/2408.07990"> πŸ“‘ FuseChat Tech Report </a> |
<a href="https://arxiv.org/abs/2412.03187"> πŸ“‘ WRPO Tech Report </a> |
<a href="https://slit-ai.github.io/FuseChat-3.0/"> 🌐 Blog Post </a> |
    
|<a href="https://huggingface.co/FuseAI"> πŸ€— HuggingFace Repo </a> |
<a href="https://github.com/fanqiwan/FuseLLM"> 🐱 GitHub Repo </a> |
</h4>

<p align="center">
    <img src="logo.png" width="60%"> <br>
</p>

</div>

## FuseAI

FuseAI is an open-source research community focused on model fusion topics. 

The community members currently applying model fusion on Foundation and Chat LLMs, with future plans to fuse Agent/MoE LLMs.

Welcome to join us!

## News

### FuseChat-3.0 [SOTA 8B LLM on AlpacaEval-2 & Arena-Hard]

- **Dec 12, 2024:** πŸ”₯ We release [FuseChat-3.0](https://huggingface.co/collections/FuseAI/fusechat-30-6752d18dec430bad7a236a75) and [Blog Post](https://slit-ai.github.io/FuseChat-3.0/). FuseChat-3.0 contains a series of models crafted to enhance performance by integrating the strengths of multiple source LLMs into more compact target LLMs. To achieve this fusion, we utilized four powerful source LLMs: [Gemma-2-27b-It](https://huggingface.co/google/gemma-2-27b-it), [Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407), [Qwen-2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), and [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct). For the target LLMs, we employed three widely-used smaller modelsβ€”[Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct), [Gemma-2-9B-It](https://huggingface.co/google/gemma-2-9b-it), and [Qwen-2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)β€”along with two even more compact modelsβ€”[Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) and [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). . The implicit model fusion process involves a two-stage training pipeline comprising Supervised Fine-Tuning (SFT) to mitigate distribution discrepancies between target and source LLMs, and Direct Preference Optimization (DPO) for learning preferences from multiple source LLMs. The resulting FuseChat-3.0 models demonstrated substantial improvements in tasks related to general conversation, instruction following, mathematics, and coding. Notably, when Llama-3.1-8B-Instruct served as the target LLM, our fusion approach achieved an average improvement of **6.8** points across 14 benchmarks. Moreover, it showed significant improvements of **37.1** and **30.1** points on instruction-following test sets AlpacaEval-2 and Arena-Hard respectively.  

<p align="center">
    <img src="FuseChat-3.0.png" width="60%"> <br>
</p>

### FuseChat [SOTA 7B LLM on MT-Bench]


- **Aug 16, 2024:** πŸ”₯πŸ”₯πŸ”₯πŸ”₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).  

- **Mar 13, 2024:** πŸ”₯πŸ”₯πŸ”₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!

- **Feb 26, 2024:** πŸ”₯πŸ”₯ We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5). FuseChat-7B-VaRM achieves an average performance of **8.22** on MT-Bench, outperforming various powerful chat LLMs like [Starling-7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat), and [Tulu-2-DPO-70B](https://huggingface.co/allenai/tulu-2-dpo-70b), even surpassing [GPT-3.5 (March)](https://platform.openai.com/docs/models/gpt-3-5-turbo), [Claude-2.1](https://www.anthropic.com/news/claude-2-1), and approaching [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).

- **Feb 25, 2024:** πŸ”₯ We release [FuseChat-Mixture](https://huggingface.co/datasets/FuseAI/FuseChat-Mixture), which is a comprehensive training dataset covers different styles and capabilities, featuring both human-written and model-generated, and spanning general instruction-following and specific skills.

<p align="center">
    <img src="tab0.png" width="60%"> <br>
</p>

<p align="center">
    <img src="tab1.png" width="95%"> <br>
</p>


### FuseLLM [Surpassing Llama-2-7B]

- **Jan 22, 2024:** πŸ”₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).

<p align="center">
    <img src="fig0.png" width="95%"> <br>
</p>

<p align="center">
    <img src="fig1.png" width="95%"> <br>
</p>


## Citation

Please cite the following paper if you reference our model, code, data, or paper related to FuseLLM.
```
@inproceedings{wan2024knowledge,
  title={Knowledge Fusion of Large Language Models},
  author={Fanqi Wan and Xinting Huang and Deng Cai and Xiaojun Quan and Wei Bi and Shuming Shi},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/pdf?id=jiDsk12qcz}
}
```

Please cite the following paper if you reference our model, code, data, or paper related to FuseChat.
```
@article{wan2024fusechat,
  title={FuseChat: Knowledge Fusion of Chat Models},
  author={Fanqi Wan and Longguang Zhong and Ziyi Yang and Ruijun Chen and Xiaojun Quan},
  journal={arXiv preprint arXiv:2408.07990},
  year={2024}
}
```

Please cite the following paper if you reference our model, code, data, or paper related to WRPO.
```
@article{yang2024wrpo,
  title={Weighted-Reward Preference Optimization for Implicit Model Fusion},
  author={Ziyi Yang and Fanqi Wan and Longguang Zhong and Tianyuan Shi and Xiaojun Quan},
  journal={arXiv preprint arXiv:2412.03187},
  year={2024}
}
```