File size: 7,952 Bytes
758f7bd
 
 
 
 
 
 
 
 
3de0c5f
 
 
 
 
b99a0ed
3de0c5f
 
 
8439f35
d6bbbdc
 
3de0c5f
 
 
8d20685
3de0c5f
 
 
 
8143d70
 
 
 
e3a4463
8143d70
 
3de0c5f
 
 
8439f35
3de0c5f
2a6496c
 
3de0c5f
 
d6bbbdc
 
3de0c5f
e8d0962
3de0c5f
 
81d8dd2
3de0c5f
 
 
 
 
 
 
 
 
 
 
 
8439f35
9911ac3
3de0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdb20dd
3de0c5f
 
 
 
 
 
 
 
 
8439f35
fdb20dd
3de0c5f
 
 
 
d206dad
3de0c5f
 
8439f35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
title: README
emoji: πŸƒ
colorFrom: pink
colorTo: red
sdk: static
pinned: false
---

<p align="center" width="100%">
</p>

<div id="top" align="center">

<p style="font-size: 40px; font-weight: bold;">Knowledge Fusion of Large Language Models</p>


<h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ FuseLLM Paper @ICLR2024 </a> |
<!-- <a href="https://arxiv.org/abs/2402.16107"> πŸ“‘ FuseChat Tech Report </a> | -->
<a href="https://huggingface.co/FuseAI"> πŸ€— HuggingFace Repo </a> |
<a href="https://github.com/fanqiwan/FuseLLM"> 🐱 GitHub Repo </a> |
</h4>

<p align="center">
    <img src="logo.png" width="60%"> <br>
</p>

</div>

## FuseAI

FuseAI is an open-source research community focused on model fusion topics. 

The community members currently applying model fusion on Foundation and Chat LLMs, with future plans to fuse Agent/MoE LLMs.

Welcome to join us!

## News

<!-- ### FuseChat [SOTA 7B LLM on MT-Bench]

- **Mar 13, 2024:** πŸ”₯πŸ”₯πŸ”₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!

- **Feb 26, 2024:** πŸ”₯πŸ”₯ We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5). FuseChat-7B-VaRM achieves an average performance of **8.22** on MT-Bench, outperforming various powerful chat LLMs like [Starling-7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat), and [Tulu-2-DPO-70B](https://huggingface.co/allenai/tulu-2-dpo-70b), even surpassing [GPT-3.5 (March)](https://platform.openai.com/docs/models/gpt-3-5-turbo), [Claude-2.1](https://www.anthropic.com/news/claude-2-1), and approaching [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).

- **Feb 25, 2024:** πŸ”₯ We release [FuseChat-Mixture](https://huggingface.co/datasets/FuseAI/FuseChat-Mixture), which is a comprehensive training dataset covers different styles and capabilities, featuring both human-written and model-generated, and spanning general instruction-following and specific skills.

<p align="center">
    <img src="fig_0.png" width="50%"> <br>
</p>

| Proprietary Models                                                    | #Params | MT-Bench | Open Source Models                                                    | #Params | MT-Bench |
|-----------------------------------------------------------------------|---------|----------|-----------------------------------------------------------------------|---------|----------|
| GPT-4-1106-preview                                                    | -       | 9.32     | Qwen1.5-72B-Chat                                                      | 72B     | 8.61     |
| GPT-4-0613                                                            | -       | 9.18     | Nous-Hermes-2-Mixtral-8x7B-DPO                                        | 8x7B    | 8.33     |
| GPT-4-0314                                                            | -       | 8.96     | Mixtral-8x7B-Instruct-v0.1                                            | 8x7B    | 8.30     |
| Mistral Medium                                                        | -       | 8.61     | πŸ€— [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM) | 7B      | 8.22     |
| GPT-3.5-Turbo-0613                                                    | -       | 8.39     | Starling-LM-7B-alpha                                                  | 7B      | 8.09     |
| GPT-3.5-Turbo-1106                                                    | -       | 8.32     | Tulu-2-DPO-70B                                                        | 70B     | 7.89     |
| πŸ€— [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM) | 7B      | 8.22     | OpenChat-3.5                                                          | 7B      | 7.81     |
| Claude-2.1                                                            | -       | 8.18     | OpenChat-3.5-0106                                                     | 7B      | 7.80     |
| Claude-2.0                                                            | -       | 8.06     | WizardLM-70B-v1.0                                                     | 70B     | 7.71     |
| GPT-3.5-Turbo-0314                                                    | -       | 7.94     | Yi-34B-Chat                                                           | 34B     | 7.67     |
| Claude-1                                                              | -       | 7.90     | Nous-Hermes-2-SOLAR-10.7B                                             | 10.7B   | 7.66     |
 -->
### FuseLLM [Surpassing Llama-2-7B]

- **Jan 22, 2024:** πŸ”₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).

| Model                                                    | BBH   | ARC-easy | ARC-challenge | BoolQ | HellaSwag | OpenBookQA |
|----------------------------------------------------------|-------|----------|---------------|-------|-----------|------------|
| OpenLLaMA-7B                                             | 33.87 | 69.70    | 41.38         | 72.29 | 74.53     | 41.00      |
| MPT-7B                                                   | 33.38 | 70.12    | 42.15         | 74.74 | 76.25     | 42.40      |
| Llama-2-7B                                               | 39.70 | 74.58    | 46.33         | 77.71 | 76.00     | 44.20      |
| Llama-2-CLM-7B                                           | 40.44 | 74.54    | 46.50         | 76.88 | 76.57     | 44.80      |
| πŸ€— [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B) | 41.75 | 75.04    | 47.44         | 78.13 | 76.78     | 45.40      |


| Model                                                    | MultiPL-E | TrivialQA | DROP  | LAMBADA | IWSLT2017 | SciBench | 
|----------------------------------------------------------|-----------|-----------|-------|---------|-----------|----------|
| OpenLLaMA-7B                                             | 18.11     | 39.96     | 22.31 | 70.31   | 5.51      | 0.68     |
| MPT-7B                                                   | 17.26     | 28.89     | 23.54 | 70.08   | 5.49      | 0.88     |
| Llama-2-7B                                               | 14.63     | 52.46     | 27.25 | 73.28   | 6.48      | 0.14     |
| Llama-2-CLM-7B                                           | 14.83     | 53.14     | 28.51 | 73.45   | 6.91      | 0.94     |
| πŸ€— [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B) | 15.56     | 54.49     | 28.97 | 73.72   | 6.75      | 1.65     |


## Citation

Please cite the following paper if you reference our model, code, data, or paper related to FuseLLM.
```
@inproceedings{wan2024knowledge,
  title={Knowledge Fusion of Large Language Models},
  author={Fanqi Wan and Xinting Huang and Deng Cai and Xiaojun Quan and Wei Bi and Shuming Shi},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/pdf?id=jiDsk12qcz}
}
```
<!-- 
Please cite the following paper if you reference our model, code, data, or paper related to FuseChat.
```
@article{wan2024fusechat,
  title={FuseChat: Knowledge Fusion of Chat Models},
  author={Fanqi Wan and Ziyi Yang and Longguang Zhong and Xiaojun Quan and Xinting Huang and Wei Bi},
  journal={arXiv preprint arXiv:2402.16107},
  year={2024}
}
``` -->