Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel, PeftConfig | |
# Set the HF repo and LoRA model location | |
base_model_id = "unsloth/gemma-2-9b" | |
lora_model_id = "Futuresony/gemma2-9b-lora-alpaca" | |
# Load base model on CPU | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
device_map="cpu", | |
torch_dtype=torch.float32, | |
) | |
# Load tokenizer from base model | |
tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
# Load LoRA adapter | |
model = PeftModel.from_pretrained(base_model, lora_model_id) | |
model.eval() | |
# === Alpaca-style formatter === | |
def format_alpaca_prompt(user_input, system_prompt, history): | |
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) | |
prompt = f"""{system_prompt} | |
{history_str} | |
### Instruction: | |
{user_input} | |
### Response:""" | |
return prompt | |
# === Chat logic === | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
prompt = format_alpaca_prompt(message, system_message, history) | |
inputs = tokenizer(prompt, return_tensors="pt").to("cpu") | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Only return the part after "### Response:" | |
if "### Response:" in response_text: | |
final_output = response_text.split("### Response:")[-1].strip() | |
else: | |
final_output = response_text.strip() | |
history.append((message, final_output)) | |
yield final_output | |
# === Gradio Interface === | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.01, label="Top-p"), | |
], | |
title="Offline Gemma-2B Alpaca Chatbot (LoRA)", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |