FutureX / app.py
Futuresony's picture
Update app.py
7a5ec34 verified
raw
history blame
2.05 kB
import os
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from huggingface_hub import login
# Login using HF token from secrets
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise RuntimeError("Missing HF_TOKEN in secrets.")
login(token=hf_token)
# Base and LoRA model paths
base_model_id = "unsloth/gemma-2-9b-bnb-4bit"
lora_model_id = "Futuresony/future_12_10_2024"
# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Load LoRA weights
model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()
# Chat function
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
prompt = system_message + "\n\n"
for user_input, bot_response in history:
prompt += f"User: {user_input}\nAssistant: {bot_response}\n"
prompt += f"User: {message}\nAssistant:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
final_response = response.split("Assistant:")[-1].strip()
return final_response
# Gradio interface
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System Message"),
gr.Slider(50, 1024, value=256, step=1, label="Max Tokens"),
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
],
title="LoRA Chat Assistant (Gemma-2)",
description="Chat with your fine-tuned Gemma-2 LoRA model"
)
if __name__ == "__main__":
demo.launch()