Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
from huggingface_hub import login | |
# Login using HF token from secrets | |
hf_token = os.environ.get("HF_TOKEN") | |
if not hf_token: | |
raise RuntimeError("Missing HF_TOKEN in secrets.") | |
login(token=hf_token) | |
# Base and LoRA model paths | |
base_model_id = "unsloth/gemma-2-9b-bnb-4bit" | |
lora_model_id = "Futuresony/future_12_10_2024" | |
# Load tokenizer and base model | |
tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
# Load LoRA weights | |
model = PeftModel.from_pretrained(base_model, lora_model_id) | |
model.eval() | |
# Chat function | |
def generate_response(message, history, system_message, max_tokens, temperature, top_p): | |
prompt = system_message + "\n\n" | |
for user_input, bot_response in history: | |
prompt += f"User: {user_input}\nAssistant: {bot_response}\n" | |
prompt += f"User: {message}\nAssistant:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
final_response = response.split("Assistant:")[-1].strip() | |
return final_response | |
# Gradio interface | |
demo = gr.ChatInterface( | |
fn=generate_response, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System Message"), | |
gr.Slider(50, 1024, value=256, step=1, label="Max Tokens"), | |
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
title="LoRA Chat Assistant (Gemma-2)", | |
description="Chat with your fine-tuned Gemma-2 LoRA model" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |