Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,66 +1,66 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import
|
| 5 |
from peft import PeftModel
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# Login using HF token from secrets
|
| 9 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 10 |
-
if not hf_token:
|
| 11 |
-
raise RuntimeError("Missing HF_TOKEN in secrets.")
|
| 12 |
-
login(token=hf_token)
|
| 13 |
|
| 14 |
-
#
|
| 15 |
base_model_id = "unsloth/gemma-2-9b-bnb-4bit"
|
| 16 |
lora_model_id = "Futuresony/future_12_10_2024"
|
| 17 |
|
| 18 |
-
# Load
|
| 19 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 20 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
base_model_id,
|
| 22 |
torch_dtype=torch.float16,
|
| 23 |
-
device_map="
|
| 24 |
)
|
| 25 |
|
| 26 |
-
# Load LoRA
|
| 27 |
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
| 28 |
-
model.eval()
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
prompt = system_message + "\n\n"
|
| 33 |
-
for user_input, bot_response in history:
|
| 34 |
-
prompt += f"User: {user_input}\nAssistant: {bot_response}\n"
|
| 35 |
-
prompt += f"User: {message}\nAssistant:"
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
temperature=temperature,
|
| 42 |
top_p=top_p,
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
final_response = response.split("Assistant:")[-1].strip()
|
| 49 |
-
return final_response
|
| 50 |
-
|
| 51 |
-
# Gradio interface
|
| 52 |
demo = gr.ChatInterface(
|
| 53 |
-
|
| 54 |
additional_inputs=[
|
| 55 |
-
gr.Textbox(value="You are a
|
| 56 |
-
gr.Slider(
|
| 57 |
-
gr.Slider(0.1,
|
| 58 |
-
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
],
|
| 60 |
-
title="LoRA Chat Assistant (Gemma-2)",
|
| 61 |
-
description="Chat with your fine-tuned Gemma-2 LoRA model"
|
| 62 |
)
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|
| 65 |
demo.launch()
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
from peft import PeftModel
|
| 4 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Define the base and LoRA model IDs
|
| 7 |
base_model_id = "unsloth/gemma-2-9b-bnb-4bit"
|
| 8 |
lora_model_id = "Futuresony/future_12_10_2024"
|
| 9 |
|
| 10 |
+
# Load the base model on CPU with float16
|
|
|
|
| 11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
base_model_id,
|
| 13 |
torch_dtype=torch.float16,
|
| 14 |
+
device_map="cpu", # Load the model on CPU, no GPU
|
| 15 |
)
|
| 16 |
|
| 17 |
+
# Load the PEFT LoRA model
|
| 18 |
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
|
|
|
| 19 |
|
| 20 |
+
# Tokenizer for the model
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Function to respond to the user's input
|
| 24 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
| 25 |
+
# Prepare the message history for chat completion
|
| 26 |
+
messages = [{"role": "system", "content": system_message}]
|
| 27 |
+
for val in history:
|
| 28 |
+
if val[0]:
|
| 29 |
+
messages.append({"role": "user", "content": val[0]})
|
| 30 |
+
if val[1]:
|
| 31 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 32 |
+
|
| 33 |
+
messages.append({"role": "user", "content": message})
|
| 34 |
+
|
| 35 |
+
# Generate a response
|
| 36 |
+
response = ""
|
| 37 |
+
for message in model.chat_completion(
|
| 38 |
+
messages,
|
| 39 |
+
max_tokens=max_tokens,
|
| 40 |
+
stream=True,
|
| 41 |
temperature=temperature,
|
| 42 |
top_p=top_p,
|
| 43 |
+
):
|
| 44 |
+
token = message.choices[0].delta.content
|
| 45 |
+
response += token
|
| 46 |
+
yield response
|
| 47 |
|
| 48 |
+
# Gradio interface setup
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
demo = gr.ChatInterface(
|
| 50 |
+
respond,
|
| 51 |
additional_inputs=[
|
| 52 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 53 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 54 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 55 |
+
gr.Slider(
|
| 56 |
+
minimum=0.1,
|
| 57 |
+
maximum=1.0,
|
| 58 |
+
value=0.95,
|
| 59 |
+
step=0.05,
|
| 60 |
+
label="Top-p (nucleus sampling)",
|
| 61 |
+
),
|
| 62 |
],
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
if __name__ == "__main__":
|
| 66 |
demo.launch()
|
|
|