Futuresony commited on
Commit
6ca233d
·
verified ·
1 Parent(s): b102c35

Update streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +60 -60
streamlit_app.py CHANGED
@@ -1,61 +1,61 @@
1
  # streamlit_app.py
2
- import streamlit as st
3
- import sys
4
- import os
5
-
6
- # *** Add these two lines at the very top ***
7
- from dotenv import load_dotenv
8
- load_dotenv() # Load variables from .env file
9
-
10
- # Add the directory containing app.py to the Python path
11
- # This assumes app.py is in the same directory as streamlit_app.py
12
- sys.path.append(os.path.dirname(os.path.abspath(__file__)))
13
-
14
- # Import your respond function and any necessary global variables from app.py
15
- # Make sure app.py loads the model, tokenizer, etc. when imported
16
- try:
17
- from app import respond, model_id # Import your main function and model_id
18
- # You might also need to import other things if respond relies on globals directly
19
- # from app import model, tokenizer, embedder, nlp, data, descriptions, embeddings, ...
20
- print("Successfully imported respond function from app.py")
21
- except ImportError as e:
22
- st.error(f"Error importing core logic from app.py: {e}")
23
- st.stop() # Stop the app if the core logic can't be loaded
24
-
25
- # Set Streamlit page config
26
- st.set_page_config(page_title="Business Q&A Assistant")
27
-
28
- st.title(f"Business Q&A Assistant with {model_id}")
29
- st.write("Ask questions about the business (details from Google Sheet) or general knowledge (via search).")
30
-
31
- # Initialize chat history in Streamlit's session state
32
- # Session state persists across reruns for a single user session
33
- if "messages" not in st.session_state:
34
- st.session_state.messages = []
35
-
36
- # Display chat messages from history on app rerun
37
- for message in st.session_state.messages:
38
- with st.chat_message(message["role"]):
39
- st.markdown(message["content"])
40
-
41
- # Accept user input
42
- if prompt := st.chat_input("Your Question"):
43
- # Add user message to chat history
44
- st.session_state.messages.append({"role": "user", "content": prompt})
45
- # Display user message in chat message container
46
- with st.chat_message("user"):
47
- st.markdown(prompt)
48
-
49
- # Get the current chat history in the format your respond function expects
50
- # Gradio's history is [(user, bot), (user, bot), ...]
51
- # Streamlit's session state is a list of dicts [{"role": "user", "content": "..."}]
52
- # We need to convert Streamlit's history format to Gradio's format for your respond function
53
- gradio_chat_history = []
54
- # Start from the second message if the first was from the system/initial state
55
- # Or just iterate through pairs, skipping the latest user prompt for history pass
56
- # The respond function expects history *before* the current turn
57
- history_for_respond = []
58
- # Iterate through messages, excluding the very last user prompt which is the current input
59
- for i in range(len(st.session_state.messages) - 1):
60
- if st.session_state.messages[i]["role"] == "user" and st.session_state.messages[i+1]["role"] == "assistant":
61
- history_for_respond.append((st.session_state.messages[i]["content"], st.st
 
1
  # streamlit_app.py
2
+ import streamlit as st
3
+ import sys
4
+ import os
5
+
6
+ # *** Add these two lines at the very top ***
7
+ from dotenv import load_dotenv
8
+ load_dotenv() # Load variables from .env file
9
+
10
+ # Add the directory containing app.py to the Python path
11
+ # This assumes app.py is in the same directory as streamlit_app.py
12
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
13
+
14
+ # Import your respond function and any necessary global variables from app.py
15
+ # Make sure app.py loads the model, tokenizer, etc. when imported
16
+ try:
17
+ from app import respond, model_id # Import your main function and model_id
18
+ # You might also need to import other things if respond relies on globals directly
19
+ # from app import model, tokenizer, embedder, nlp, data, descriptions, embeddings, ...
20
+ print("Successfully imported respond function from app.py")
21
+ except ImportError as e:
22
+ st.error(f"Error importing core logic from app.py: {e}")
23
+ st.stop() # Stop the app if the core logic can't be loaded
24
+
25
+ # Set Streamlit page config
26
+ st.set_page_config(page_title="Business Q&A Assistant")
27
+
28
+ st.title(f"Business Q&A Assistant with {model_id}")
29
+ st.write("Ask questions about the business (details from Google Sheet) or general knowledge (via search).")
30
+
31
+ # Initialize chat history in Streamlit's session state
32
+ # Session state persists across reruns for a single user session
33
+ if "messages" not in st.session_state:
34
+ st.session_state.messages = []
35
+
36
+ # Display chat messages from history on app rerun
37
+ for message in st.session_state.messages:
38
+ with st.chat_message(message["role"]):
39
+ st.markdown(message["content"])
40
+
41
+ # Accept user input
42
+ if prompt := st.chat_input("Your Question"):
43
+ # Add user message to chat history
44
+ st.session_state.messages.append({"role": "user", "content": prompt})
45
+ # Display user message in chat message container
46
+ with st.chat_message("user"):
47
+ st.markdown(prompt)
48
+
49
+ # Get the current chat history in the format your respond function expects
50
+ # Gradio's history is [(user, bot), (user, bot), ...]
51
+ # Streamlit's session state is a list of dicts [{"role": "user", "content": "..."}]
52
+ # We need to convert Streamlit's history format to Gradio's format for your respond function
53
+ gradio_chat_history = []
54
+ # Start from the second message if the first was from the system/initial state
55
+ # Or just iterate through pairs, skipping the latest user prompt for history pass
56
+ # The respond function expects history *before* the current turn
57
+ history_for_respond = []
58
+ # Iterate through messages, excluding the very last user prompt which is the current input
59
+ for i in range(len(st.session_state.messages) - 1):
60
+ if st.session_state.messages[i]["role"] == "user" and st.session_state.messages[i+1]["role"] == "assistant":
61
+ history_for_respond.append((st.session_state.messages[i]["content"], st.st