File size: 1,524 Bytes
b3c27d4
70f3d70
 
b3c27d4
001cb85
70f3d70
b3c27d4
70f3d70
 
da5cc5d
 
 
 
 
70f3d70
 
 
da5cc5d
70f3d70
 
 
 
 
 
 
 
 
b3c27d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from flask import Flask, render_template, request, jsonify
from huggingface_hub import InferenceClient

app = Flask(__name__)
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})
    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
    return response

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/get_response', methods=['POST'])
def get_response():
    data = request.json
    message = data['message']
    history = data.get('history', [])
    system_message = data.get('system_message', "You are a friendly chatbot.")
    max_tokens = int(data.get('max_tokens', 512))
    temperature = float(data.get('temperature', 0.7))
    top_p = float(data.get('top_p', 0.95))

    response = respond(message, history, system_message, max_tokens, temperature, top_p)
    return jsonify({'response': response})

if __name__ == '__main__':
    app.run(debug=True)