FuturesonyAi / app.py
Futuresony's picture
Update app.py
c4efeea verified
raw
history blame
2.97 kB
import gradio as gr
import os
import json
import faiss
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient, hf_hub_download
# πŸ”Ή Hugging Face Credentials
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Store your token as an environment variable for security
# πŸ”Ή FAISS Index Path
FAISS_PATH = "asa_faiss.index"
# πŸ”Ή Load Sentence Transformer for Embeddings
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# πŸ”Ή Load FAISS Index from Hugging Face
faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
faiss_index = faiss.read_index(faiss_local_path)
# πŸ”Ή Initialize Hugging Face Model Client
client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
# πŸ”Ή Retrieve Relevant FAISS Context
def retrieve_relevant_context(user_query, top_k=3):
query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
distances, indices = faiss_index.search(query_embedding, top_k)
retrieved_texts = []
for idx in indices[0]: # Extract top_k results
if idx != -1: # Ensure valid index
retrieved_texts.append(f"Example: {idx} β†’ {idx}") # Customize how retrieved data appears
return "\n".join(retrieved_texts) if retrieved_texts else "No relevant data found."
# πŸ”Ή Format Model Prompt with FAISS Guidance
def format_prompt(user_input, system_prompt, history):
retrieved_context = retrieve_relevant_context(user_input)
faiss_instruction = (
"Use the following example responses as a guide for formatting and writing style:\n"
f"{retrieved_context}\n\n"
"### Instruction:\n"
f"{user_input}\n\n### Response:"
)
return faiss_instruction
# πŸ”Ή Chatbot Response Function
def respond(message, history, system_message, max_tokens, temperature, top_p):
full_prompt = format_prompt(message, system_message, history)
response = client.text_generation(
full_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# βœ… Extract only model-generated response
cleaned_response = response.split("### Response:")[-1].strip()
history.append((message, cleaned_response)) # βœ… Update chat history
yield cleaned_response # βœ… Output the response
# πŸ”Ή Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful AI trained to follow FAISS-based writing styles.", label="System message"),
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()