FuturesonyAi / app.py
Futuresony's picture
Update app.py
ed6f3c7 verified
raw
history blame
1.85 kB
import gradio as gr
from huggingface_hub import InferenceClient
from collections import defaultdict
# Initialize model client
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
# Memory storage
session_histories = defaultdict(list) # Stores full chat history per session
def format_chat_history(history):
"""Formats history in a structured way for LLaMA models."""
chat_str = ""
for user_msg, bot_response in history:
chat_str += f"User: {user_msg}\nAI: {bot_response}\n"
return chat_str.strip() # Remove unnecessary spaces
def respond(message, history, system_message, max_tokens, temperature, top_p):
session_id = id(history) # Unique session ID
session_history = session_histories[session_id] # Retrieve stored history
# Add user message to history
formatted_history = format_chat_history(session_history)
full_input = f"{system_message}\n\n{formatted_history}\nUser: {message}\nAI:"
# Generate response
response = client.text_generation(
full_input,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Extract & clean response
cleaned_response = response.strip()
# Update chat history
session_history.append((message, cleaned_response))
return cleaned_response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are an AI assistant that remembers previous conversations.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=250, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()