Me / app.py
Futuresony's picture
Update app.py
556a36e verified
raw
history blame
2.24 kB
import gradio as gr
from huggingface_hub import InferenceClient
import soundfile as sf
from transformers import pipeline
import torch
# Initialize the client for the text generation model
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
# Initialize the TTS pipeline from Huggingface
synthesizer = pipeline("text-to-speech", "Futuresony/output")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Prepare the messages for the chatbot
messages = [{"role": "system", "content": system_message}]
# Add history of previous conversation
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Generate the response from the model
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Convert the generated text to speech
speech = synthesizer(response)
# Save the generated speech to a file
sf.write("generated_speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
# Return both the text and the audio for playback
return response, "generated_speech.wav"
# Create the Gradio interface with a textbox for the user to input a message
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(label="Type your message here", placeholder="Enter message...", lines=2),
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
outputs=[gr.Textbox(), gr.Audio()],
)
if __name__ == "__main__":
demo.launch()