Futuresony commited on
Commit
a2f2a2c
·
verified ·
1 Parent(s): ecba29a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -17
app.py CHANGED
@@ -1,11 +1,14 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,6 +18,7 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
@@ -26,7 +30,6 @@ def respond(
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,30 +38,34 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
 
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import soundfile as sf
4
+ import torch
5
+ from transformers import pipeline
6
 
7
+ # Set up your TTS model (as before)
8
+ synthesiser = pipeline("text-to-speech", "Futuresony/output")
 
 
9
 
10
+ # Set up your text generation client
11
+ client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
12
 
13
  def respond(
14
  message,
 
18
  temperature,
19
  top_p,
20
  ):
21
+ # Generate text response from your model
22
  messages = [{"role": "system", "content": system_message}]
23
 
24
  for val in history:
 
30
  messages.append({"role": "user", "content": message})
31
 
32
  response = ""
 
33
  for message in client.chat_completion(
34
  messages,
35
  max_tokens=max_tokens,
 
38
  top_p=top_p,
39
  ):
40
  token = message.choices[0].delta.content
 
41
  response += token
42
  yield response
43
 
44
+ # Convert the generated text into speech (Text-to-Speech)
45
+ # Get speaker embedding (optional, if you want to control the speaker)
46
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
47
+ speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
48
+
49
+ # Generate speech from the text response
50
+ speech = synthesiser(response, forward_params={"speaker_embeddings": speaker_embedding})
51
 
52
+ # Save the speech to a file (you can play it on the fly or return it in other formats like MP3)
53
+ sf.write("generated_speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
54
+
55
+ return response, "generated_speech.wav"
56
+ # You can return the text along with speech if needed
57
+
58
+
59
+ # Create the Gradio interface
60
  demo = gr.ChatInterface(
61
  respond,
62
  additional_inputs=[
63
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
64
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
65
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
66
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
67
  ],
68
  )
69
 
 
70
  if __name__ == "__main__":
71
  demo.launch()