Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,25 +3,30 @@ from huggingface_hub import InferenceClient
|
|
3 |
import soundfile as sf
|
4 |
from transformers import pipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
-
# Initialize the client for the text generation model
|
8 |
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
|
9 |
|
10 |
-
# Initialize the TTS pipeline from Huggingface
|
11 |
synthesizer = pipeline("text-to-speech", model="Futuresony/output")
|
12 |
|
|
|
|
|
|
|
|
|
13 |
def respond(
|
14 |
message,
|
|
|
15 |
system_message,
|
16 |
max_tokens,
|
17 |
temperature,
|
18 |
top_p,
|
19 |
-
history=[]
|
20 |
):
|
21 |
-
# Prepare the messages for the chatbot
|
22 |
messages = [{"role": "system", "content": system_message}]
|
23 |
|
24 |
-
# Add history of previous conversation
|
25 |
for val in history:
|
26 |
if val[0]:
|
27 |
messages.append({"role": "user", "content": val[0]})
|
@@ -32,7 +37,7 @@ def respond(
|
|
32 |
|
33 |
response = ""
|
34 |
|
35 |
-
# Generate the response from the model
|
36 |
for message in client.chat_completion(
|
37 |
messages,
|
38 |
max_tokens=max_tokens,
|
@@ -44,16 +49,16 @@ def respond(
|
|
44 |
response += token
|
45 |
yield response
|
46 |
|
47 |
-
# Convert the generated text to speech
|
48 |
-
speech = synthesizer(response)
|
49 |
|
50 |
-
# Save the generated speech to a file
|
51 |
sf.write("generated_speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
52 |
|
53 |
-
# Return both the text and the audio for playback
|
54 |
return response, "generated_speech.wav"
|
55 |
|
56 |
-
# Create the Gradio interface with a textbox for the user to input a message
|
57 |
demo = gr.Interface(
|
58 |
fn=respond,
|
59 |
inputs=[
|
|
|
3 |
import soundfile as sf
|
4 |
from transformers import pipeline
|
5 |
import torch
|
6 |
+
from datasets import load_dataset
|
7 |
|
8 |
+
# Initialize the client for the text generation model
|
9 |
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
|
10 |
|
11 |
+
# Initialize the TTS pipeline from Huggingface
|
12 |
synthesizer = pipeline("text-to-speech", model="Futuresony/output")
|
13 |
|
14 |
+
# Load the speaker embeddings dataset
|
15 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
16 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
17 |
+
|
18 |
def respond(
|
19 |
message,
|
20 |
+
history: list[tuple[str, str]],
|
21 |
system_message,
|
22 |
max_tokens,
|
23 |
temperature,
|
24 |
top_p,
|
|
|
25 |
):
|
26 |
+
# Prepare the messages for the chatbot
|
27 |
messages = [{"role": "system", "content": system_message}]
|
28 |
|
29 |
+
# Add history of previous conversation
|
30 |
for val in history:
|
31 |
if val[0]:
|
32 |
messages.append({"role": "user", "content": val[0]})
|
|
|
37 |
|
38 |
response = ""
|
39 |
|
40 |
+
# Generate the response from the model
|
41 |
for message in client.chat_completion(
|
42 |
messages,
|
43 |
max_tokens=max_tokens,
|
|
|
49 |
response += token
|
50 |
yield response
|
51 |
|
52 |
+
# Convert the generated text to speech
|
53 |
+
speech = synthesizer(response, forward_params={"speaker_embeddings": speaker_embedding})
|
54 |
|
55 |
+
# Save the generated speech to a file
|
56 |
sf.write("generated_speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
57 |
|
58 |
+
# Return both the text and the audio for playback
|
59 |
return response, "generated_speech.wav"
|
60 |
|
61 |
+
# Create the Gradio interface with a textbox for the user to input a message
|
62 |
demo = gr.Interface(
|
63 |
fn=respond,
|
64 |
inputs=[
|